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PREFACE

This book is a monograph on some hypothesis testing problems
in the Genperal MANOVA (Multivariate Analysis of Variance)
model or general multivariate regression model and its extended
models. The General MANOVA model was originally formulated
as a general model for describing the growth curves of animals
and it is often called a growth curve model. However, the model
includes the classical MANOVA model and various multivariate
regression models (see Introduction) and has a broader applicability
in many fields. In fact, some applications to economic phenomena
are also made in this book. In addition, the incompleteness of the
model provides a theoretical interest or challenge for analysis.

We first treat the problem of testing the General MANOVA
hypothesis which we simply call the GMANOVA problem. This
problem contains as special cases many problems treated in the
growth curves, the testing problem on means with covariates, etc. 25
well as the usual MANOVA. problera. Then the problem is extended
to cover some other interesting problems in the General MANOVA
model such as the problem of tesing on means with missing data,
the problem of testing on regression coefficients in an SUR (seem-
ingly unrelated regression) model, etc. All the problems here
deal with linear hypotheses on the regression coefficient matrices
of the dpow&m.

On the other hand, the problems of testing some hypotheses on the
covariance structure of the models are also treated. A hypothesis of
our main concern is what is called Rao’s covariance structure and the

problem of testing the hypothesis in the GMANOVA model is regard-
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od as an extension of the problem of testing independence in the
MANOVA model or as the problem of choice between the ordinary
least squares estimator and the generalized least squares estimator
in the model. It is also closely related to the problem of testing
independence with missing data and the problem of testing inde-
pendence in an SUR model, which are to be treated in this book-

In the analysis of the problems, we attached a considerably great
importance to application and tried to provide many practical
examples though we analyze the problems in a systematic way
based on the invariance principle. Consequently we had to save
some topics and proofs of theoretical interest.

With deep gratitude I acknowledge the support of aothers in the
past. First of all, T sincerely appreciate Professors QOsamu Isono,
Seiji Nabeya, Clifford Hildreth and Morzis L. Eaton for their
instructions and encouragement while I was a studeat. Secondly I
wish to thank Professors P.R. Krishnaiah, R.A. Wijsman and Akio
Kudo for supports and encouragement in the second stage of my
academic life. My persopal thanks go to my friends the Treichels,
Hiroshi Ogura and Masayoshi Mizuno for their ceaseless sincere
encouragement. 1 also thank Ms. Keiko Horil for her typing.

Finally I acknowledge the American Statistical Association, the
Institute of Mathematical Statistics and Professor L. Banken for
their permissions of citation.

Portions of the work have been supported by the Ministry of
Education of Japan and some portions are supported by the Ministry
of Education under General C 59540104 and by Nihon Keizal Ken-
kyu Shorei Zaidan (Japan Foudation for Economic Research).
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INTRODUCTION

1. Brief Summary of the Problems in this Book
The purpose of the present book is to anmalyze the following
problems by using the principle of invariance and make the results

applicable to practical problems.

(1) GMANOVA problem. The general MANOVA. (multivariate
analysis of variance) problem, which we concern in Chapter 3, is

the problem of testing a hypothesis of the form
11 H: XLBX,=X, versus K:XBX.+X,

in the generalized multivariate regression model or growth curve

model

{1.2) Y=X,BX.+E, E ~ N0, &2

where the notation here is made clear in Chapter 1. We call the
model (1.2) the GMANOVA model and the problem {1.1) the GMA-
NOVA problem. In this rather simple formulation, many hypothesis
testing problems commonly treated in applications are included.
For examples, when X;=1 and X,=1, the problem is well known
as the MANOVA problem, which alone covers a lot of interesting
problems in applicatioas such as the problems of testing on means,
regression coefficients, effects of treatments, etc. in upivariate or
multivariate models. On the other hand, some important problems
which are not in the framework of the MANOVA problem are
included in the above GMANOVA problem. Such examples are
problems of testing on growth curves used in biometrics, econo-

metrics ete., of testing on means with prior information, of testing
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the equality of means in a classification model.

The GMANOVA. problem also entails some features of theoretical
spterest which the MANOVA problem does not provide. The
features aze in fact created by the ﬁummmno.w of the matrices X; and
X, in (1.2) and (1.1). One of the features is that the information
provided by Xz and X, produces an ancillary statistic—a statistic
which is a part of a sufiicient statistic but whose marginal distri-
bution is mmumﬁwﬁmn-mnmwlmnm that the LRT {likelihood ratio test)
ignores the ancillary statistic completely. so that the LRT is inad-
missible. This is rather surprising because no other such examples
have ever been found in practical problems under normal models.

Seme other features are stated in Chapter 3.

(2) Extended GMANOVA problem. An extension of the GMA-
NOVA problem is made by imposing additional restrictions on the

coefficient matrix B as prior information;
(1.3 PBQ. = R: (=L..k.

and then the problem is to test (1.1) under the model (1.2) with
{1.3). This is called the extended GMANOVA problem in this
book. By this extension, the formulation has 2 wider scope to
cover such important problems in applications as problems of
testing on means with incomplete data, of testing on regression
coefficients in a SUR (seemingly unrelated regression) model, of
testing the eguality of means in a classification model with covar-
jates etc. The analysis of the extended GMANOVA problem is
concerned in Chapter 4. .

(3) Testing Independence in the GMANOVA model. In the
GMANOVA model (1.2), the problem of testing the hypothesis

that the covariance matxix 2 is of the form

(1.4 Q=XiIT X, + 242, (XZ.=0),

which is known as Rad’s covariance structure, corresponds to the

problem of testing independence in the MANOVA problem with

extra data. In fact, an invariance reduction of the problem of

testing (1.4) yields the problem of testing independence between

two sets of variates with extra data on the first set. Ience the

analysis of the problem also solves the problem of testing indepen-

dence with incomplete or missing data. In addition, the problem

of testing independence in 2 classification model with covariates

is a special case of the problemm here. On the other hand, the

problem of testing (1. 4) in itself is interesting because it is consi-

dered the problem of a choice between the GLSE (generalized least
squares estimator) and the OLSE (ordinary LSE) in the GMANOVA
3 model. This is a theme of Chapter 5.

(4) Testing independence in a SUR model. Chapter 6 deals with

* the problem of testing independence in a two equations SUR model,

which is regarded as a special case of testing independence in an
extended GMANOVA model. The problem here also is regarded
-as the problem of a choice between the GLSE and the OLSE in
“" the SUR model

In Chapter 1, the explanations and implications of these problems

are given in details with many practical examples and in Chapter

2, the Neyman-Pearson testing theory is reviewed with a special

emphasis on invariance and optimalities of tests. In a1l the problems,

LBI (locally best invariant) tests are derived and made applicable

by providing approximate null distributions.

2. Notation
Some notation we use throughout the book is listed here. By R#,

we denote an n-dimmensional Eucledian space, and by |A4], trd

and A’ the determinant, trace and tramspose of a matrix A respec-
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tively. For matrices and vectors, gothic letters are used and

A: nxk means that A is an nx% matrix. In addition,

notation:

we use the

BLin={A:nxn| 1 A| 0} : the group of mxr nonsingular

matrices,
Olnl={AegL(n) |A’A=1) : the group of nXx=n

matrices,

orthogonal

din)={A4 1 nxn| A’=A} : the set of symmetric matrices,

An)={Acsd(n)| A is positive definite}, and

EUn)={AdEEL(R)| A= (ai;), -ay;=0 for i>7} : the group of

nXn nonsingular upper triangular matrices.

For A=,y (n), AY* denotes the symmetric square root of A4, i.e.

(4¥%32=4, and diag {@,...,a.} denotes the diagonal matrix with
diagonal elements a;'s in the given order, while DIAG{4,,..., 4.}

the block diagonal matrix with 4;'s as diagonal blocks. Further, for:

ASd(n) ch;{4) denotes the i-th largest characteristic root of A.

Chapter 1

TESTING PROBLEMS IN GMANOVA AND
EXTENDED GMANOVA MODELS

1. GMANOVA and SUR Models.

"1.1. Classification of regression models. Whichever univariate or

multivariate, a linear regression model is formally expressed as
A y=XB+¢

where X is an NxX K matrix and €is an NX1 error term vector
with mean E{E)=0 and covariance matrix Covig)=E{ge')=82. As
will be seen, what is called a seemingly unrelated regression model
(SUR model), a multivariate regression model or a MANOVA
(multivariate analysis of variance) model, a growth curve model
" etc, are special cases of the model (1.1). In fact, when the model
(1.1) is written as a natural form according to the structure of X
and @, it is called under different names and, needless to say,
different approaches are taken to the problems of estimation and
testing according to the structure of the model. On the other hand,
" a lnear restriction on the coefficient vector £ also differentiates

' the model. That is, when a general linear restriction of the form

5



{1.2) RB=r, R:rxk rank(R)=r,

is imposed on B as prior information, the structure of the matrix
R sometimes differentiates the model (1.1). Such a restriction is
often encountered in applications as 2 result of a formal treatment
of the model in question. Here we shzll consider some represen-
tative models produced by the differences of the structure of
matrices X or # or R. Incidentally #f no information on the
structure of £ in (1.1) is available, 2 is not estimable so that no
efficient methods for estimation or testing can be provided in

general.
(A) Heteroscedastic model. Let

o X, 0 X. 1%k, rank(X; =% (i=1,2)
0 X N=n,+ns K=2k

.mw eu.u..ﬁ:. O
B= : 2RX1, and f= .
2 0 Euu.ﬂ_u

In economics, this model is assumed when a structural change
in an ecomomy is suspected and it is often the case that the

hypothesis
H:pB,=8. versus K:B,F8:

is considered under the assumption oy F oz Of course, it is also

interesting to test H:on=ox 1D this model.

(B) SUR model. In the model (1.1), let

X, O :
X, X, :nxk, rank(X)=k
Ls X= -
. ! N=np, K=% uak:
0 X,
and

A=[ZRL), Z:5xp

‘.‘a..Hur -, ), where A®E denotes the Kronecker product of two
‘matrices A and B. The model (1.1) with these X and 2 is called
“an SUR model or Zellner's model. This model is usually expressed
‘as p different regression models with cross correlation,
: (1.4 y:=XiBut+E;

Covly;, ¥)=Eeg) =0 L, &Ji=1-0)

where y, 8 and & in (1.1) are decomposed as

=gyl with i iaxl, &=(&, &) with &:1nx]l

.”,.._msz.h ﬁmnu- ey _mw.vu dq.w.wwp m-.—. H _W—.XH m.H—A._. 2= AQ..-....V H vamv.

The model is also rewritten as a multivariate regression model

3.## prior information on the coefficient matrix:
(1.5) Y=XB+E, CoviE)=1,%%

where Y=[y,,-y,] : nxp, X=[X;, -, X1 nx K, which may not
be of full rank, E=[§,,&,]: nXp and

1 Kxp.

It should be noted that the information B;=0 (i%j} in the

structure of this coefficient matrix B cannot be expressed as a
single general linear restriction

(1. mv ‘mwfw.mnﬂ.mwe R, :rxK, Bt pXry rank(R;)=r;

vwhere B=(8;;) with B kX1, though the model (1.5) is a
multivariate regression model. In this sense, an SUR model is
considered different from a multivariate regression model or a

/

géneral multivariate regression model introduced below. Some

Feferences on estimation or testing problems under this model are



Zellner (1962, 1963), Mehta and Swamy (3976}, Revankar {1974,
1976), Srivastava (1970), Kariya (1981 a, b), Kariya and Maekawa
(1981), Kariya, Fujikoshi ard Xrishnaiah (1984) etc. In the last
paper, the model (1.4) is extended to 2 multivariate version: ¥;
=X:But+ E(i=1,--2).

(C) Multivariate regression model. Let Xi=X,==X,=X,:n
Xk in (1.4) and B=[Fy,""-8sp] : EXp. Then the model (1.1} with

(1.4) becomes a well known multivariate regression model
L7m Y=X,B+E, Cov{E)=L®ZX.

In this sense, an SUR model may be regarded as an extension of
the multivariate regression model (1.7), while (1.7) in turn
includes (1.4) as a specizl case though X in (1.5) may not be of
full rank.

In the model (1.7), most linear restrictions on the coefficient

matrix B are expressed as a general linear restriction of the form
(1.8) R.B=R, R,:rxk rank{R)=r,.

The problem of testing this linear restriction (1. 8} under the model
{1.7) is called the MANOVA (multivariate analysis of variance)
problemn and there (1.8) is called a general linear hypothesis.
There are many specific problems put in this form and a lot of
references on the MANOVA problem. Typical examples are the
problem of testing on regression coefficients, the problem of testing
the equality of mean vectors in two populations known as Hotel-
ling’s T?problem etc. Textbooks such as Anderson (1958}, Giri
(1977), Eaton(1983) etc. will be useful as references on the MAN
OVA problem and other testing problems.

The linear restriction (1.8) is further generalized to the form
of (1.6). But the problem of testing the linear restriction (1.6)
under the model (1.7) is more difficult to treat than »rmﬁ.. of testing

8

2 (1.8) under (1.7) because-the structure of R; and the structure of

Z-become associated. In fact, this problem is a special case of the
GMANOVA (general MANOVA)problem, as will be seen next.

(D) General multivariate regression model. In (1.1), let
X=X@X: X :1axk X,:gqXxp,
(1.9 rank(X)=k, rank (X)}=¢
A=[LRZ], X:pxp, N=np, K=kq,
7 S ; &

Y=|: |inxp, B=|: |:1kxg and E=|: |1 axp.

v B &L

=y, y) with oy 1px],
&= (8], vee, £ with & 1 px1 [i=1, -, 7),

ma”ﬁmm; ...nmc with mu. tgXl G«“H...J .S.

- Then the medel (1.1} with (1.9} becomes

(1.310) Y=X,BX,+ E, Cov(E)=IR®Z

. This model is called a general multivariate regression model or
- GMANOVA model or sometimes growth curve model. Special
. forms of this model has been considered in various problems in

" association with growth curves, but it is Potthoff and Roy (1964)

that gave the formulation (1.10). The problem of estimating the

coefficient matrix B in the model (1.10) is treated by Rao {1965,

1967), Geisser (1970), Kariya (1983) etc. On the other hand, the

- problem of testing the general linear hypothesis in (1.6), i.e.,

(1.1D) R,BR.,=R,, B, :rxk R,: gXry rank(R)=r.

is treated by Khatri(1966), Gleser and Olkin(1970), Kariya(1978)

g



etc. This testing problem is often called the GMANOVA problem
and the hypothesis(1.11) shall be called a GMANOVA hypothesis.
Some problems associated with the GMANOVA problem are
considered by Hooper(1982, 1983), Marden(1984) etc. The analysis
of the GMANOVA problem via invariance is a main theme of
this book. The MANOVA problem in (C) is of course a special
case of the GMANOVA problem with X,=I, and R.=1I,.

We usually assume normal distributien for the error term matrix

E in each model:

(1.12) E ~ N0, L®Z) with Ied.(p)

where &,(p) denotes the set of pxp positive definite matrices.
Here by the notation in (1.12), it is meant that the » rows of E
independently follow the same normal distribution with mean O

and covariance matrix £. More generally we make

Definition 1.1. Let I/ be an nxp random matrix and let u; : 1Xp
be the i—th row of I (=1, ~-,n). Then the notation

U~ Nip, AQO) (AEL.(n), PEL4(p))

means that the npx1 veector (i, -, u,)’ is normally distributed
with mean (g, )’ and covariance matrix AR®P, where p;is

the i—th row of p.

Lemma 1.1. When U ~ Nig, AR®), then for any B:mxXn and
¢ :pxg, BUC ~ N(BpC, BAB'QC'®C).

1.2. Ezamples of the GMANOVA problem. Here we shall give
some examples of the GMANOVA problem which are not special
cases of the MANOVA problem. The following basic example is
stated in terms of the growth of animals in Potthoff and Roy

(1964) but we here describe it in terms of economic time series.

10

Example 1.1. Let z{f)=(n{), -, ) be: a px1 vector

consisting of p economic variebles, where y(t) is observed at time

t=1, --, n, and ¥(1), -, y(n) are assumed to be independently
distributed 2s normal distribution with mean p(f) and covariance
matrix FES,{p) *

(1.13) yit) ~ Np@), & (=12

Further the i—th element w(t) of pit) is assumed to obey a poly-

nomial of £—1 degrees;

: . 1.14) e um..on_..m&unmn:.u_um;luﬁmlu {i=1,, )

This is a model in which p economic time series (3.(t), -, ¥,(t})

fuctuate interdependently at each time t and the mean growth

-process of each z;(t) is described by the polynomial (1.14). This

‘mode) is written as a multivariate regression or MANOVA model;

- (1.15) Y=X,B+E, E ~ N0,L®)

where

g 7 (1)’ 11 1% - 1%

: ¥ (2)’ 1227 - 251

(1) Y= . |iaxp, X=|. ;| imxk
y ()’ 1#nn® -

~and

ES Bz - R»o

.QS .m.k s ..w?
1.17) B=|. : T EXp.

Bir— E»Tu. -t _mvﬁlp

In this model, the hypothesis that the # economic variables follow

o the same growth pattern completely or Bry=Bay=+=By{i=0,1,

~ B—1) is expressed as

(1.18} BR,=0
11



Further, the hypothesis that the p economic variables follow the
same growth pattern but they may be different in the original

levels Bi(at t=0) or the intercepts (1=1,---,$) is expressed as

(1.200 R,BR,=0 with =00, 1] (B—1) XE.

This is the hypothesis that B,;=8;;=r+=8;; (=1, -, k—1) but
B, may be different.

Though the model (1.15) is a MANOVA model, the hypothesis
(1.18) (or (1.20)) is 2 GMANOVA hypothesis different from the
MANOVA hypothesis (1.8) as the coefficient matrix B is multiplied
by the matrix R, from the right. Therefore the problem of testing
{1.18) (or (1.20)) is not in the framework of the MANQVA
problem, and it is regarded as a specizal case of the GMANOVA
problem. That is, in this case, the structure of the hypothesis
(1.18) {or {1.20)) makes the problem the GMANOVA problem
though the model is 2 MANOVA model.

Example 1.2. Suppose there are groups of countries, where the
first group consists of four Asiar countries and the second group
consists of three African countries. And it is judged that the
countries in each group have taken the same process of growth.
Here the problem is to test the hypothesis that the two groups have
the same growth pattern based on the p economic variables of the

same kind for each country;

12

Y0 = @0t 720 o050)  U=L...4 1 t=1...,2)

H\u—.ﬁﬂv“ ﬁm\umwmﬂvu @‘Nhuﬁwvv...«w\u..bﬂ&us ﬁm”“—.u N. 3 3 w"Hu...uNU.

Tua{l) yall) yaall)
Y,= ¥2(2) yal®) () T X3P

Ltra(n) taaln) yuln)’

Here Y; is the matrix of all the » variables in all the countries
belonging to the i-th group over t=1l,...,n, where i1=1,2. Since we
‘have assumed that all the countries in each group had tzken the

‘same growth process, we have

| Ely)]==Elyn@I=ml) (t=1,...7)
éind

| Elyn(d)l=r=Elyn@ 1= =17,

Further we assume that g;(z) is approximated by a polynomial of
degree k~1. Then similar to Example 1.1, define B, and B, for
‘each group as in (1.17) and use the same X; in (1.18) to obtain

EX,)= TN‘“W“.NM.WERWT.N‘HNL HN&WL“HEH?H?HL
and
E(Y )= (X:B:, X, B, X, B:)= X:B,[ L, I, I, 1.

13



Hence letting
(1.21) Y=[Y,Y.]: 2x7p, B=[B,B,]:kx2p and

LIL LI 000

(1.22) Xo= 1 2P XTh,
0oo0oe I 1,1,
our model is finzlly expressed as
(1.23) Y=X.BX,+E, E ~ N, I ®IRZ],

where all the ¢ variables in 7 countries are assumed to have the
same covariance matrix . The hypothesis to be tested is B,=R,

and so it is expressed as

I
(1. 24) BR.=0 wih R=|

12pX P

This is a GMANOVA problem with a covariance matrix of structure
I, ®Z. Further, the hypothesis that the growth patterr between the
two groups is the same except the initial levels or intercepts is of
the form R,BR;=0 as in (1.20). It is noted that the model {1.23)
is an expression of a model pooling cross-section data and time

series data. The problems here will be treated in Chapter 4

Examples 1.3. Let .HHHAH? xz)" 1 2p %1 be a random sample from
Nig, Z) where x5 pX1 and p=(pi, p)’ with p, 1 px1 (k=1,2:4i=
1,..,#). Then letting ¥'=[x,,....%,] and e=(1,..,1) : X1
¥ :nx2p ~ Nley, I,®Z) or
Y=X,B+FE with X,=e, B=p' and E ~ N0, I,®I).

This is the MANOVA model, but the hypothesis p,=p, is expressed
as

I
—_ Hm.

BR,=0 with R,=

14

.”H.Hm.nnm testing this hypothesis is not a special case of the MANOVA
..wHa,EoB but a special case of the GMANOVA problem.

xample 1.4, Let

X1 #* : Y\P 71
X;= ! wv).\ M/Nn quv m.H_.Q ﬁ...“ u... \(zﬁ ‘Mu

X2/ q 2 Y25/ 4 2

be random saraples (i=1,...,7; j=1,...,m), where x; and y; are

independent. Further let

(L.28) Y=[X1ecXmYireen¥ml * (ntm) X (p+g)
i e o
B={" M)iox(prg), and X={ | atm)x2
oo oo 0 e
“Then the model is expressed as
(1.26) Y=X,B+E with E ~ N0, I..8Z)

“and when the hypothesis g,=#. is considered in this model, it is

i expressed as
R.BR,=0 with

S (Len 0

R,=(1,-1) :1x2 and R,= 1 P (pt+q) xq

: mHWmm js a special case of the GMANOVA problem.
1.8 Eaxtensions of the GMANOVA probrem.

Example 1.5. In example 1.4, let us suppose that p,=», holds
in the model (1.28) or (1.27) holds in the model, and suppose ﬂrmﬁ
‘ we are interested in the problem of testing p, =g, under this
setting. In other words, our model is (1.26) with prior knowledge
(1.27) on the coefficient matrix B and we wish to test g, =, or

15



(1.28) R,BE.,=0 where R,=(1, —1) :1%x2 and R,= .N. .
This is the problem treated by Cochran and Bliss (1948), Rao(19
49), Cochran (1964}, Rao (1966), Subrahmanian and Subrahmanian
(1971) etc., in association with discriminant analysis with covariates
(see also Memon and Okamoto (1970), and Kshirsargar (1972)
pp. 200-203). (See also Example 2.2.)

This example motivates the following extension of the GMANOVA.
problem. Let our model be given by

(1.29) Y=XBX,+E with R,BR.=R,

where X;'s and RB's are the same as before (see (1.9) and (1.10)).
Here R.BR.,=R, is no longer the hypothesis to be tested but a part
of the model. The hypothesis to be tested here is

C.. wou Numwau R..

This extension of the GMANOVA problem. has been made by
Gleser and Olkin (1970) in terms of a canonical form. Recently it
is treated by Banken (1984). We shall call the model (1.29) the
extended GMANOVA model and the problem of testing (1.30)
therein the extended GMANOVA problem. Exzmple 1.5 and the
following exaraple due to Banken (1984) are special cases of hte

extended GMANOVA problem.

Example 1.6. In onder to inveigate the effects of thyroxin and
of thiouracil on the growth of young rats, 27 rats were randomly
divided into three groups; 10 rats was in the first group, 7 ia the
second and 10 in the third. The first group was kept as a control.
The second group was given thyroxin and the third group thiouracil.

The weight of each rats was measured at the beginning of the experi-
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‘ment and then in four consecutive weeks, The data can be found in
Box (1950). Let 2y, be the weight of the j-th individual in the i-th
group at the t-th week, t=20, .. 4, J=1.c0s B0 i=1,2,3. The vectors
xi= (Tijore.naTije) s aTE assumed to be independently distributed as

x;; ~ Nips 2} (mER% FTed,(5)

“where pi={(Bigy..-ofie) a0 P is assumed to be a polynomial of

degree 2 in &, l.e.,

Fw“hmonmlhﬂn.._n&..uuu {t=0, vrs 4).

' Being randomly assigned to ome of the three groups the expected
weights of the rats should be equal at the beginning of the

| experiment:

Q1= 20 = T30~

‘Here we want to test whether the expected growth curves are

‘equal, i.e.,

H: o= ppz= po

T matrix notation, the model is given by

Y=X.BX,+E, E ~ N, I:®I)

with the constraint E,BR.=0, where

Y = %15 e n s X200 Xzt -- -5 X275 X3 wesXg20 s

e, 0 0 1 1 1 1 1
X=[0 e 0} X=0 1 2 3 #v
0 0 eq 0 1 4 9 16

iy dn Sz 1 0 -1 1
B=|a; an a=| .= , R.=|0
0 1 —1 0

dae Az Jaz

ind e;=(1,...,1)'ERL The null hypothesis is expressed as
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1 0 —1
H:R.BR,=0 with Ry= and R.=I where

n 1 -1 = B B kd.\”ﬂ.N‘tMuuu .meﬂﬁHSuOuw

w - 1
Ba Ba ‘Nu”movbum_u Q,=({0, 1)

Hence this problem is a special case of the extended GMANOVA

problem statec above. These examples will be treated in Chapter 4. and @:={1,0)" In fact, under {1.34) B,.=0 and B»=0. Hence the

SUR model (1.4) with (1.5) is a special case of the extended
‘GMANOVA model in this sense, and so the problem of testing, say
By =0 in B1=B11sersBuant)’> under this model is also a special case
-of the extended GMANOVA problem. In fact, Bu:=0 is expressed
‘a5 R*BQ*=0 with o "

The GMANOVA. problem is further extended as follows:
The model is given by

{1.31) Y=X.BX.+E, CoviE)=I22
.Nmm@n”‘mﬁ. mw"u.u...uﬁwv
R*=(1,0,..,00 and @*={L0 .., o)

and the problem is to test
" However, without any conditions on X, Ry’s and Qy's, it is very

- difficult to treat such an extended GMANOVA problem since the
“pested”. This point is fully discussed in

{1.32) R BQuri=Hpn

restrictions are not
Chapters 4 and 6.

where Ry's, @/'s, and H{'s are fixed matrices. We shall also call this
problem an extended GMANOVA problem. An example of model
formulated in this way is the SUR model in (1.4) introduced in
(B). There it has been remarked that the coefficient matrix B of
the form (1.5) cannot be put in a form as a single general linear
restriction of the form R,BR,=R, But the coeficient matrix B in

¥ =XB1E is expressed as a matrix B satisfying

2. Testing on Some Covariance Structure

2.1. OLSE and GLSE. To state 2 second main problem in this
_book, we here consider some conditions on the identical equalities
"between the QLSE(ordinary least squares estimator) and the GLSE

(generalized LSE) and between sample variances. Let us write

(1.33) Hﬂ&W@C"o Q"mt.;%r ku‘.&w@u._.lho (/=53 -0 )3
P mmm‘m.wov.muo nh.”u.u .-uhvl.u.v

_again the model (1.1) as

where
(2.3 y=Xp+¢& E(=0, Covi{g)=t0=4,

7
R;=01s,0,-..0], Q,;=(0,..,0,1,0,..,,0)f (F=2y e D) 5 ceeenes

4

. “where X is an Nx K matrix of rank K. An estimator of the form
.mw,vh.ﬂ ﬁcu vany Ou H.Ev”_v @..vu.“ ﬁov resy 1, O. ey Ou\ AN“H‘ ...MVIHU :

T (2.2) (@) =X X)X 67y

In particular, when p=2, the model is expressed as : "
is called the GLSE where #£4.(N) is an estimator of @. In

particular, b{I) is called the OLSE and b(®) is sometimes called the
GME (Gauss-Markov estimator) whether or not @ is known. But

19

Y=XB+E CoviE)=IRZ,
R.B@Q,=0, R,BQ.=0.

(1.34)
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we also often call 5(®) GLSE when no confusion is caused.- The
following theorem states alternative conditions for the GME to

be identically equal to the OLSE.

2.7 Y=X.BX;+E, Cov(E}=1,8%

here Y:nxp, X,:inxkof rank k, X,:Ixpof rank [ and XE
S.(p). Let

Theorem 2.1. A necessary and sufficient condition, for b(@)=b(I)
is that ome of the following (1), (2) and {8} holds.

(1) (Kruskal (1968}) The column space L{X) of X is @-invariant.
2) (Zyskind(1967)) L(X) is spanned by some k latent vectors of .
(3) (Rao(1967)) Let Z bean NX{ —K) matrix of rank N—X such
that X'Z=0. Then for some I'E.(K) and 4=, (N—K), ¢ is

@ 8) B(E)=(X{X)" XY I X X,Z X7

.,aa the GME in the GMANOVA model {2.7) and let Z,be a (p—1)
x $ matrix such that X,Zi=0 and rank(Z;)=p—L

~

..Oo&oﬁmﬂu. 21. A necessary and sufficient condition for Bi=B
1 that for some M4, (l) and d&S.(p—1), ¥ is of the form

written as

(2.3) O=XIX'+Z4Z". (2.9 F=XirX,+Zi4Z,

Note that if »=I, (2.9) simply means Fed (p) and Bx=
'YX X;Y, which is the GME in the MANOVA model.

In the model {2.1), unless @ is of certain structure, @ is not
efficiently estimable based on y. For the npumber of unkmown

ﬁmamﬁmnmum (8, @, 8) is greater than the sample size N. This implies

Proof of (3). (3} is a modified version of Raoc (1967) due to
Geisser (1970). Sufficiency is clear. To prove the necessity, suppose
b{@¢)=b(I}). Then from AN§J.5¢N§AHTN‘NUJN\, we obtain

(2.4) X'pZ=0

that in the model (2.1), the hypothesis that the covariance structure
1s Om the form (2.3} will not be testable based on y. However, in
.ﬁWm GMANOVA model (2.7), the hypothesis that £ is of the form
42.9) is testable based on Y. This is a third main problem treated
. this book. In the below, it will be stated more explicitly and

Since H=[X, Z] is of rank N, (2.4 implies

X'eX 0
{(2.5) o=(H"H'¢HH = (H)™ H~.
0 Z'eZ

Here using (H=[X{X' X}, Z(Z'Z)] in (2.5) and setting
moEm implications of the problem are given.

mmnonm&r we shall consider a condition on the identical equality

‘between the OLS sample variance and the GLS sample variance. Let

=(X'X)X'0X(X"X)™ and A=Z' V2L 2 Z),

we obtain (2.3), completing the proof.

The structure of @ in (2.3) is called Rao’s covariance structure (2.10) sto)=[y— Nm_nez‘elumt Xbio H_ /m

and the inverse of @ is given by
s.rmum m=N or N—K. This is regarded as an estimate of 7% in

(2:1) when @ is known. We shall call s*(I) and (@) the OLS

sample variance and the GLS sample variance respectively.

(2.6) eJHN.n\N..NULHAAN.ﬁﬁAN\+NﬁN\NV1§1ﬁN\NUruN\.

We apply the above result to the GMANOVA model in (1.9} ;
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Theorem 2.2. (Kariya (1580)) Let @, and @, be two covariance
matrices. Then a necessary and sufficient condition for which
s2(®,) =5*(@,) holds for all y is that @, and @. are related as follows:

Tor some NXN symmetric matrix H,

(2.11 @,= No, N+ H—NHN

or equivalently
(2.12) 9,=0,+H—NHN

where N=I-X(X'X)*X', In particular, the class of @ for which -
s2(@)=52(I) holds for all y is the class of @ of the form

(2.13) o=I+H-NHN
for some H.

Proof. Let Z be an Nx{N—K]} matrix such that Z'X=0, ZZ'=N
and Z'Z=Iyx. Then as is easily shown

(2.14) A AKX (XA XA =Z(Z AZ)Z
for any Aci8.(N). Hence (P} =s2(@,) for all v is equivalent to
o — 0, XX X)X o, =0, =9, X (X9, X ) X0, or
Z9.Z=2'0.Z.

Solving this equation based om the results in Rac and Mitra (1971,
pages 24-25) yields (2.11) The converse is clear because Z'0 2=
Z'0,Z from (2.11). Replacing Hby H+0, in {2.11) yields (2. 12),
while replacing H by H—®, in (2.12) yields (2.11). This com-
pletes the proof.

Combining this result with Theorem 2.1 vields

Corollary 2.2, A necessary and sufficient condition for which
Big)=b(I) and s*@)=s*(I) hold is that @ is of the form

22

“(2.15) P=XIX'+N

for some I'E.(K), where bi®) and s*[@) are defined by (2.2) and
9.10) respectively.

.,mv.u..oow. Take Z to be the matrix used in Theorem 2.2, and observe
‘that for this choice of Z, Theorem 2.1 holds. Then from (2.3),
Z'0Z=4, while from (2.13), Z'0Z'=Iy-x. Hence from the eque-
”.. lity of @ in (2.3) and (2. 18), A=Iy—g follows. This implies {2.15)
by (2.3). Suficiency is clear from its form. .

~ By this corollary; when @ is of the form (2.15) in (2.1) even if
I is unknown, (B(@), s2(@)) for (8, ) is identically equal to (b{I),
s3(I}). Conversely the class of @ for which (b(1), §2(I) is as efficient
as (b{@), s*(@)) is given by the class of @ of the form (2.15). Further,
-under normality &~N{0, ¢ and when @ is of the form (2.15), the
MLE (maximum likelihood estimator) for (8, 7 is (BT}, s*(I N for
any I'ed.(K).

To apply Theorem 2.2 and Corollary 2.2 to the GMANOVA model
(2.7) with T=720, let . .

ze) S = (Y- X,B(E) X (Y-XBEX/n
and
(2.17) () =tz 025 (0)/np.

. Corollary 2.3, (1) A necessary and sufficient condition for v*i@)

=(I) is that for some HES(p), @ is of the form

{2.18) o=I+H—-N,HN, with ZN“.Hvluhsum.Nw?N‘u&lu.N‘u

-~

(2) A necessary and sufficient condition for B @=BI) and v*P)

=v*(I) is that for some red, (&, ¢ is of the form
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Theorem 2.3, A necessary and sufficient condition for S(Z)=8(I)
is that I is of the form (2.9) or Z=XiI'X,+Zi4Z, for some
reddl) and ded.(p-10.

Proof. Let N,=I—X,(XiX,'X{ and Q=I-ZXjX, 2 X37X,

Then from
Y-X, B\ X, =N, Y+ (I-N) ¥Q,
we obtain
{2.20) aS(¥) = Y'N Y+ @Y (I-N,)YQ.

Hence S(Z}=S(I) for all ¥ implies

2.91) QY (I-N)YQ:= N, Y'(I-N)¥N, forall T,

Hence using QF'X:i=0, (2.21) implies (J—N,) YN, ZX3=0 for
all ¥, which in turn implies Mo X,=0. This is nothing but the
form of (2.4). Hence X must be of the form required. The converse
is clear, completing the proof.

Combining this result with Corollary 2.1 yields

Corollary 2.4. A necessary and sufficient condition for wﬁMum
B(I) and S(Z)=8(I) is that 2 is of the form (2.9).

Tt is remarked that when E~N(0, L,®ZX), the density of ¥ is

expressed as

FY|B,Z)=c| 2| expl—ZtrZ75(%) ;wﬁ-ﬁ%nTwz
x X1 X,(B(Z)—B)+ I ¥Y— X, B(2) X))’ X.(B(Z)—B)X.].

I T is of the form (2.9), by Corollary 2.4 S{Z)=8{I) and B(Z)=

-~ -

BiI) so that {B(), S(IN) is the MLE of (B, X}. Otherwise the MLE
of (B, X) is complicated (see Chapter 3).

Example 2.1 Consider the GMANOVA model (2.7) under the
24

following covariance structure

Z=g*(1~p}L,+c*pee’

"where e=(1,...,1)’ER? and —(p—1)7<p<TL. Then by Theorem 2.1
‘and Corollary 2.1 a necessary and sufficient condition for NXMVH
“B(I) is that the column space L{X7) of X;is Z-invariant or z2Xi
'=X1d for some A :Ixl Hence B(Z)=B(I) if and only if ee'X}
- =X;A for some 4, which holds if and only if either (1) Xe=0 or
©(2) L{X% contains e. In the case of (1), e=Zic for some cSRf
so that

(A) T = X[ 1—p) (X X)X, + Zilo*(1—p) (2,25 +o"pee’ 12,

while in the case of (2), e=X:d for some dER so that
(B) % = X[ 1-p) (X)) +opdd’ ]X; + Z L i—plZ, 2012,

.Ooumoﬂzmn&w by Theorem 2.8 under these covariance matrices,
5(2)=8(I), where S(F) is defined in (2.18).

2.2 Choice between OLSE and GLSE. Let Y=X,BX;+E be the

CGMANOVA model in (2.7), where normality is assumed for E:
@2 E ~ N(O,L®3) with Zed.(s)

By Corollary 2.1, the problem of testing the hypothesis that 2
belongs to the class

(2.23) 6 = [E=XirX,+ZidZ, I'ed. k), 45,0}
or the problem of testing

(2.24) H:X=6 versus K:XZ&S

may be regarded as a problem of choice between the OLSE BiI)
and a GLSE B(Z), where Z, and B(>) are as before {see (2.8)).
Here, if the hypothesis H is accepted, Z is considered to belong to
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or to be close encugh to the class § and the OLSE B(I may be
used rather than a GLSE B{Z). It should be noted that this testing
problem is testable in a growth curve model if n>p and thatit is
regarded as a problem of choice between the OLSE and a GLSE
i i<y, I I=p, B(I)=(XiX,)*X{Y is the best linear unbiased
estimator of B. Of course, when K :X&6G is true, the covariance
matrix of the OLSE is given by

(2.25)  Var(B(I)=(XiX)"@XX) X.EXH LX),

while the covariance matrix of the Gauss-Markov estimator (GME)

is given by
(2.26) Var(B(Z) = (XIX) " ®(X, 2 X5
Hence the difference is

(2.27) Var{B()—Var(B(2))
= (X X)X X)X ZZUZ E2) 2, 2 X XX

¥

which is nonnegative defirite, where (2.14) is used in the evaluation
of the difference. Clearly this difference is zero if and only if
X,£Z5=0 or equivalently ¥ belongs to the class 6. Therefore under

Z&E, it is positive semi-definite. The relative efficiency of the
CLSE is usually defined by

(2.28) o= Vex(B(I))| /| Var(B(Z))|
={| XX/ X2 X0 | X EX, | b
From Bloomfield and Watson (1975) and Knott (1975), it follows
that
(2.29) 1=zg=2{Tlia ﬂh_u...o‘blmi\aﬁn_uQ»i..iuuuww (t=min(l, p—1))

where ¥,2--27,2>0 are the characteristic roots of 2. Therefore the
lower bound for the efficiency 5 of the OLSE relative to the Gauss-
Markov estimator B(Z) depends on the dispersion of the roots {v}
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lower bound cannot be 1. However, the bound is derived for which

of Z, and unless the variance Z{v,—%%)/p is zero or 1="-"=%, the

it holds for any X, and so for some X, the efficiency # can be
slose to 1. In fact, if €8, n=1. This implies that the problem of

‘a choice between the OLSE and a GLSE will be better to consider

for a given X.. The above testing problem concerns this problem
and is treated in Chapter 5, where in deriving the LRT (likelithood

“ratio test) for the problem (2.24), the MLE (maximum likelihood

estimator) is derived.

9.3 Extension of the identity between OLSE and GLSE. Here
we extend the results in Theorem 2.1 and Corollary 2.1 to the case

where on the regression coefficient, a linear restriction is imposed.

Let

{2. 30} y=Xg+¢& Covigl=c'0, X:NxK, rank(X)=K

" be a regression model with 2 linear restriction

{2.31) RB=r, R:MxEK, rank(Ri=M

Thern as is well known, when @ is known, the best linear unbiased

estimator {BLUE) or the Gauss Markov estimator is given by

e .wwv B@)=bl0)— H'R'(RH'R')"[Rb(®)—r]
: ,?Emww B(P) is defined by (2.2) and

H=X'¢"2X.

'Here define

(2.33) Q=I-R'(RR')R', v=QB and #=R/'(RE)7r.
Then B=y-+# and the model in (2.30) is expressed as

{2.34) §=XQv+& with F=y—XF.

‘Further, observing by the definition of the Penrose generalized
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inverse and R,: pXr; of rank r:. As has been seen’in 1.1, this model

is.Tegarded as a regression model in (2. 30) with restriction (2.31)
here X=X,®X, and R=R,®R,’. Hence, in our model here the
BLUE in (2.32) is reduced to

(QHQ)*=H~—~H-R'(RH"R)RH" and QQHQ)"=(QHQ)®

>

the BLUE in (2.32) is expressed as

(2.35)  BO)=%@)+7 witk F(@)=(QHQ) " QX'dPF.

(2.40) B(2)=B(2)~ V.[R.B(Z)R,— R V2(Z)

and so the covariance matrix of B(®) is expressed as

(2.36)

Covi{B(®))=Cov{7(0))=0*(QHQ)*. B = (XX XY XX, T XY

Now, since ¥ does not depend on @, from (2.35) 2 necessary and 2(2.41) V= (X1X)Ri[R,(XiX)"R{]"* and

sufficient condition for B(®)=E(I) is that Vo5 = [RUX.ZX) R I RU KXY ™

QX0 XQ)"QX' 0 =(QX' XQ)"QX".
Using (QHQ)(QHQ) QX0 =QX'9™%, this becomes

(2.42) Q=I;—R'RR)"R’ with E=R.QR:
QX o~ [ I-XQQX' XQ)*QX"]=0. ,

. B(®)=B{I) if and only if

Hence from Theorem 2.1 where no restriction exists,

we obtain

Theorem 2.4, The OLSE under R8=r is equal to the BLUE under 2.43) IRZ=XWI W' X'+Z4Z’

Rp=r if and oaly if for some I'€d (M) and 4E4(N—M) for some I'Ed,iryr;) and 4€8.(lk—rr;), where W and Z are

mﬁmbm& for @ in (2.42) and X=X,®X! in the same way asin
Theorem 2.4.

{2.37) O=XWIwX + Z4Z'

where Wis a2 Kx(K—M) matrix of rank K—M such that WW'=Q
and WW=Ic.y, and Z wm.mﬂ Nx (N—K+M) matrix of rank N—
KM such that Z'XW=0.

"It is noted that when the restriction R,BR,=R, is present and
when R.+1I, the condition (2.43) is not expressed in terms of X,

and X, only. But if the restriction is not present, the condition is
reduced to the one in Corollary 2.1,

We apply this result to the growth curve model

(2.38) Y=X,BX;+FE, CoviE|=LRZ, Icd,.(p)

Though the covariance structure in (2.43) is a necessary and
: sufficient condition for the BLUE or GLSE B(Z) in (2.40) to be
,m@ﬁmﬂ to the OLSE B(I), it is difficult to put itin a form in which
the covariance structure is testable. Hence we here consider the
case X;=1 In this case, the model (2.38) becomes the MANOVA

with a linear restriction

(2. 39} .mwummwwﬂﬁo

where X, nxk of rank %, X, :Ix2 of rank /, 1y Xk of rank

p.
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model with a linear restriction (2.39) ;

(2.44) Y=X.B+E, CoviE)=I®2 R.BR,=R.

Then from (2.41), BE)={XiX)"Xi{¥Y=B(), but V,(Z)=Vil)
does not necessarily hold unless rank(B.)=r,=p where V,{Z} is
given in (2.41). Therefore in the case rp<<p the BLUE B(Z) in
(2.40) is not identically equal to the OLSE Bl even under the
model (2.44).

Theorem 2.5. In the model (2.44), B(Z)=B(I) if and only if

(2.45) X=R,IRi+P,dP] for somel'€d{rs) and 4€E4,(p—7y),

where P, is 2 pX(p—rs) matrix of rank p—r, satisfying PiP.=
N.Vlﬂn mem. anm nuo.

Proof. From (2.40) and B(Z)=B(), BZ)=B() if and only if
ViL R, B R.— R IV, (Z)=Vi[ R\ BU) R~ R,3 V(1)

By (2.41) with R,BR,=R, and X,=1, this implies
R[B(I)-B] [R.(R:ZR.)“RiZ— R,(RiR.)— Ri]=0.

Since B(J}—B spans R**, and since rank(R,)==r,<#. this in turn
implies .

R (RIZRNRIZ=R,{RiE,) " R:.
In fact, ABC=0 for all B implies A®C’'=0 which implies C=0
unless A=0. Therefore in the same way as in the proof of Theorem

2.1, ¥ is of the form (2.45). The converse is clear, proving the
result.

The covariance structure (2.45) can be tested based on the
model (2.44).- The problem of testing & of the form (2.45) will be
ireated in Chapter 5.
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Example 2.2. Let us conSider Example 1.5, where the model is of
“.ﬁr.aa.mogp (2.45) if the hypothesis (1.27) is a priori known, which

is assumed in a classification model with covariates. Then by our

theorem, the BLUE B(®) under the restriction (1.27) is identically

”.mp.FmH to the OLSE B(I) if and only if ¥ is of the form

0 I 4 0\p /2., X
o= 0, )+ 4(L,0)= =
I 0 0 I'fg \Bu Zo

since NNHQV‘ where (p+g) and ¢ in Example 1.4 correspond to

“p and r; here respectively. Hence B(Z)=B(I) if and only if x;; and
%y (and 3y and y.;) are independent under normality or Z;,=0. In
this case, no additional efficiency in estimating p, and 7, can be

“expected by using the covariates xy and y.; with E(x)=E(v.;),

and on the contrary using X, and yy; under the independence will
be less efficient than ignoring them. Hence before making a use of
the covariates, it will be desirable to check i ¥ is of the form
,mvoqa or if x,; and y,; are independent.

" For references, discriminant problems under z1=94: have been
considered by Cochran and Bliss(1948), Rao (1849), Cochran (1964),

. Rac (1966}, Memon and Okamots (1970) etc. When T is known

and Z,,=0, Cochran and Bliss (1948) constructed a discriminant

function using X;'s and ;s as well as x,s and ’s which is
2 g 7] 1 17

more efficient than the usual diseriminant function using X.i's and
y,/s. When ¥ is unknown, they proposed z diseriminant function
in which ¥ is replaced by an estimate. However when Z,,=01is
close to zero, this discriminant funetion does not seem to be better
than the usual one based on x,’s and w;'s. Of course, when Zy,=
0, it seems most reasonable to base discrimination solely on the
basis of x;;’s and vy;’s. This motivates the problem of testing Z,.=
0 or if X is of the above form. This problem is treated in Exmaple
2.1 of Chapter 5.
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5 4. Case of SUR model. It has been observed in 1.5 that an
SUR model is an extended GMANOVA model. Here in 2n SUR
model (1.4) with (1.5), a necessary and sufficient condition for the
GLSE to be identically equal to the OLSE is derived. Rewrite the

model as follows:

(2. 46) y=XB+¢, Cov(g)=ZR 1,

whete

X, 0

n B &;
y=| 1 |rapxl, B=|:|:Kx1 and &=i I jiapxl
Yy By &

Here the GLSE or the Gauss-Markov estimator is given by

(2.47) BERN=(X'[EZRI]1 X)X 2RI ]y.

Then by Theorem 2.1, a necessary and sufficient condition for

bE®I =b(I®I) is that for some res. (k) and 4ed{np—K)

(2.48) IRI=XrX'+Z4Z",

where 2 :npXinp—XK) mmﬁmmm.mm Z'X=0 with rank(Z)=np—K.
Here we take
Z, 0

z=| -
0 Z,

rank (Z)=n—Fk,
Z X, =0
where Z; 1 nx(n—k) (i=1,--,p). Further let 2={oi),

P=(ly), Tyikxk; and  A=(d5), 4;: (n—k) X (n—kj).

Then (2.48) is equivalent to
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‘or equivalently

-1

(OXIXIXXIX) and  dy=0i( 212N T2 (22 )

- Ti=aiy
i,j=1, -, p) This is a condition that o;; must satisfy for BIZ®I) =

(I®D.

"Next we consider a condition on X;'s for which pERD=bIRI)
for 21l TE4,(p). Multiplying (2.49) by (X{X)Xi from the left
and by X; from the right yields

a....‘..u.r..HH.GN‘HrNA.

This implies k;=k;, but from the symmetry of i and j it also

implies k= k; Hence k;=Fk; is necessary, under which

Iy=o(X X0

{2.50)

Further, pre-multiplying (2.49) by M=X(X!X) X! and using
(2.50) yields

o.&E—.”o.C.N.—.ﬁ.N.mH&IHNm.

If o340, this implies

E.."E&

‘under which Z;=Z; can be taken.

‘Theorem 2.5. H(ZRDN=bI®I) for all T€4,(p) i and only if

" (2.50) M= =M,

Proof. The necessity is proved above, while the sufficiency follows

: by tracing back the proof of the necessity.

. The condition (2.51) implies ky=--=k, Of course, if Xy=--=
X, (2.51) immediately follows. It is remarked that M, =M, if and
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only if X;=X.4 for some ASFlk). dome closed set §,C€

: Auuu 4) mﬁ@em?mﬁﬁyﬂh.‘qﬁ&_ g, ?v“mCUamonmﬁﬁvﬁn\.ﬁK_ 8,%) z.ex

3. Identifiability of Hypotheses. implies 8,=6..

3.1. Definition. Let CTf4={n} (singleton) and if &,={8,} (simple hypothesis), this
mmmgﬂou says that 6, is identifiable if Fl] 8, Ma) =5UPsee: F (X 6, o}
or some closed set &, implies 6,=1{8,}. Hence in this special case,

Definition 3.2 is stronger than Definition 3.1. This fact may lead

7@ = {f1x16)|6<6)

be a model or a class of pdfs (probability density functions; on

R" with respect to a o-finite measure parametrized by 6, where @

is a nonempty open set of R For comparison, we give the usual
definition of identifiability of F(8). 'Definition 3.3. A simple hypothesis 8,8 is said to be identifiable

Definition 3.1. A pdf flx|8,) in F(O) or simply §,€0 is said to be
identifiable if for some &,E€

flxl@)=f(x]8) ae x

8.1

For simple hypotheses for ©, we shall use this definition rather
than Definition 3.2. Under this definition, if #,&8 is not identi-
mm.E.au there exists 8,+8, such that (3.5) holds. This implies that
for testing 8, versus §;, the likelihood ratio is identically mﬂﬁ& to

implies 0,=8,. Further F(B) or € is called identifiable if each
#&@ is identifiable.

In any statistical problem, the identifiability of = model (or a

class of pdf’s under consideration) must be guaranteed in advance.
In the below, assuming this identifiability for 5{6), we shall define
the identifiability of a hypothesis testing problem. Te treat the

H or

(3.6) suprasfl2]85, M) /suDneaf x| 0, M) =1 a.ex

Tt also implies that the problem of testing 9, versus &,(C6O) is not
distinguishable from the problem of testing 6, versus &, from the

likelihood ratio;

gituation with nuissance parameter, let

(3.2) ) = {flx|8,\), §€0, vE4}

be a class of pdf's on R» parametrized with (6,%) and consider a
(3.7 mﬁwaﬁwumﬁﬁyna&. fxjg, ) mﬁﬁﬁnesmﬁvvmh% (x[8,)

mﬁ?.ntq (x| @, M) mﬁﬂ.vma&. {x16,2)

hypothesis

(3.3 H: 06, (@,=8)

~ On the other hand, Definition 3.2 may be associated with model
selection. Let ¥(@,x4) be a submodel of the model F@x4) in

(3.2), where 6;is 2 closed subset of 8i=0,1), and let §;(x) and
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where @x 4 is open in R*%R! and O, is a closed subset of 8.

Definition 3.2. A hypothesis @, is said to be identifiable if for
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%(x} be the MLE's (maximum likelihood estimators) for 6; and A

under F(@:% 4) respectively. One may think of the selection of
variables in regression. Then, according to our Definition 3.2, the
two models F(@;x4) (=0,1) are not identifiable if as in (3.4) the

maximum likelihoods of the two models are identically egual;

a.ex

Fll By(x), Mx)) =11 . (x}, Mx))

and if @,%6,. Hence the concept of the identifiability in Definition

(3.8

3.7 is also useful in the selection of models based on an information
criterion. In particular, in AIC (Akaike's ‘information eriterion},
the information for F(@:;x ) is defined as

{8.9) 110, % 4) = —2log Flx} §;0x), Mx)) +28; (p;=dim@;+dimd).

If (3.8) holds and if p,=p., then the two models are regarded as
unidentifiable, since {8, x 4)=I{@,x ).

3.2 Examples.

Example 3.1. Let y=X8+¢& with &~N(0, o*®) be a normal regres-
slon model where X is an zXxEk fixed matrix of rank % and €€
3,(n) (the set of positive definite matrices), Here A= {8, a9} | FERF,
ct=R}=R*x R, and @=4,n). Then, the simple hypothesis 6=1I
in @ is not identifiable by Definition 3.3 because by Corollary 2.2,
for any @, belonging to the class

9, = (0| 0=XT'X'+[-X(X'X) X", Ted,(k),|0|=1} (CO),
we obtain

SUP(g,00) HA.HHQQ- ﬁmu Oguvv =SUP (8.0 .N.AH_ Quu A.Qu QNVV.

Even by Definition 3.2, g,=1I is not identifiable because
)

In fact, by Corollary 2.2, the MLE is the GLSE b(®)

SUP(g,-2) Mn.ﬁm\_ mou ﬁmu Onnvv"m.ﬁﬁmmmp SUP{s,r2) .\Am&m mu ﬁ.my O..J
which is
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entically equal to the-OLSE b(I), and the MLE of o2 is the
saniple variance s2(@) in (2.10} which is identically equal to s3I},
_that for any 90,

supie..n Sy |0, (8, o?))=e 2 2msI)} "2 @] 7
=¥ (2ms? (1))~ =supe,.afy! T, (8, %))

If we do not require the condition [#[=1 in ®,, the likelihood

" supeg,.n Fiy| @, (8, o))/ supta,.n vl L, (B, ¢¥)
LD/ @10 2= 0]

because s# (@ =s*(I). This is not necessarily one but a constant.

‘Example 3.2. In Example 3.1, assume & ~ N(0, z®{p)), where t>>0,

1 (3.10) o) =I,+pd, p<ip|Olp)ES. ()}

ind A :nxn is known. This contains exact or approximate models

of serial correlation including the autoregressive model of the
first order (see Anderson (1948) and Kadiyala (1970)). We here

nsider the problem

‘@. 11) H:00)=TF versus K:&(p), pF0 (or p>>0).

.Hrmb for a fixed p, the LRT rejects A when

sup(s,o.fy| 8, 7, Olp))/supieaflyis 7, 1)
=|@{p)| 7 LsHT)/5* (@(p)) 12>

By Theorem 2.2, for a2 fixed p, H and K are observationally

equivalent as hypotheses if and only if for some symmetric matrix B

(3.12) (I+pA)-=I+B—NBN

Tn general, for a given X, (3.12) does mot hold exactly. But if it

holds approximately, the likelihood ratio remains near |@{p)|™'/




for any y- In such a case, the LRT is insensitive and close to the
trivial test that rejects H when a tossed coin appears head, where
the probability of the appearance is assumed to be equal to the
significance, level. The situation is the same for the case of the
Durbin-Watson test, which can be regarded as an approximation
to the LRT. Further, if the model (3.10) does not well approximate

the process of data generation, there may exist observationally

equivalent hypotheses for Hor K.
As an example for which (3.12) holds, let us consider the intra-

class covariance matrix
Tie?, M = {1— NI +nree’] where e=(1, 1R

Then with T=g¥1—N), v"?\ﬂay.l?LwS and A=—e¢, Tlo? N 18
expressed as 7@{p) and the problem of testing H:a=0 versus K:
220 (or A>0) is equivalent to (3.11), where p<l/n from —1/(n—
D<r<l. Because eﬁBHN.__.Du\ﬁiaBuman (8.12) holds with B=
Cp/ (1—np)lee’ if Ne=0 or the column space LiX) of X contains &
in particular if the regression model contains a constant terim,
regardless of the value of p, H and K are not identifiable as hy-
potheses. On the other hand, as has been seel, i L(X) contains
e, b{@(p))=biL}. Consequently in a regression model with intraclass
covariance structure, #f L(X) contains e (), s is as efficient
as (BT 5 M), ST (o2, M), and hypotheses concerning » are not
“jdentifiable.

Let C be an nXn orthogonal matrix guch that C'AC =D=diag
{dy, -+, ds}. Then by pre- and post- multiplying (3.12) by C" and
C respectively, we get Q+?9JHH+P where R_HQAWIZ.WH,JO
=diag(8,, = 8.} Hence (3.12) holds if and only if 3;=(1+pdi™
—1 (=1, 7.

The following example is different from the context of 3.1, but

-

it is closely related.
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Example 3.3. Let X,,---, X, be a random sample from N,(g, 2} ox

X=[X, - X.J : nxp ~ Nle.u', LRI

where (p, Z)€0=R*x 4,{p} and e,=(1,--1)'ER". In this model
let us consider the problem of testing independence

(3.13) (g X)€6,={(s, ZEBO|2,,=0} versus (x,2)EO.

where T=(%;;) with Xy : pixp; 4,7=12). Then as is well known,
the LRT is given by

L=supi,,neaf X! g Z)/supiu,nee S (X g, Z)= | I— 838,878y

where S is the sample covariance matrix. On the other hand, take the

restricted model (N, (g, Z)| (s, Z)€60} where 6={{s, 2)E0|Zn=1,}

C® and in this model consider the problem of testing independence
3.14) (g DEG,={{p 5)E615,,=0} versus (u,FE6.
Then it is shown in Chapter 5 that the LRT is also given by

HﬂmsP}uvm&AN_ _F Mv\mﬁw?ﬁmmo%ﬁuﬂ .s..Mu
1Iu _H|Mm_.m.uu.wwpm.uu_ e .

Consequently the two problems (3.13) and {3.14) are not identifiable
through the LR principle. In other words, the LRT statistic itself

does not tell us which problem is tested.




Chapter 2

INVARIANCE APPROACH TO TESTING

j. A Review on Testing Theory.

1.1, The 2@393%320.: framework. In the analyses of testing
problems, we shall adopt a decison-theoretic approach established
by Neyman, Pearson and Wald, For she details of this approach,
the readers may refer to the classical but jmmortal book by Le-
hmann (1859). In this section a basic framework of the approach

is reviewed with an erphasis on testing theory via invariance. Let

(1.1) F10) = {fix18)10€6} xe¥) |

be =« class of probability densities on a subset X of an Euclidean

space with respect to2 sigma-finite measure g where the functional
form of f is known but f is parametrized by an unknown vector &
in a subset @ of an Enclidean space. Of course F(6) is assumed to
be identifiable (see Section 3 of Chapter 1). Thena testing problem
is deseribed by two disjoint subsets of @, say 6, and @,, as follows:

(1.2) H:0c0, versus K 00,

where H is considered a maintained or null hypothesis to be tested

against the alternative hypotbesis K. A decision to make here is
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either to accept (mot to Teject) the null’ hypothesis H or to reject

T relative to the alternmative K based on an observation Xx. A

decision fupction, which we shall call a test or a test function

below, is a measurable function $(x) from & into [0,1], denoting

the probability that H is rejected when x is observed. In particular,

if plx)=1, His rejected. The average probability of a test for

rejection under 8 is defined by

i, 0) = Eol (1= | plxifixlo)nidm)

and this function is called the power function of a test ¢ when

{1.3)

g6, or when K is true, meaning the average probability of the

correct decision under a test ¢ when K is true. As is well koown, in

i the Neyman-Pearson theery, in the class of level & tests defined by

(LY D= {¢l¢ is a test, SUPsee, 7 (.0) e} (0<a<l)

we wish to find a test which maximizes (¢, #) under 66, in

‘some sense. Here the number « is called a significance level, and

.u.n. corresponds to the maximum average probability of the incorrect

decision under the test ¢ when H is true. The size of a test is

defined to be the number supeee,7 (¢, 8). In maximizing power, the

following Generalized Neymarn-Pearson Lemma is usually used.

Lemma 1.1, (See, e.g., Lehmann (1959) p.83) Let Fiuww fmu be
H.am_.ém.._ﬁmm functions defined on ¥ and integrable with respect

o w, and suppose that for given comstants Ci...;ém there exists a

test function ¢ satisfying
. QJ %6\.—.&%"9

. ..o.ﬁ.....,m be the class of tests for which (*) holds. Then there exists

(i=1; ...y m)-




1 i fae AHVVM,\.muHF%..m&v a.e.
0 if (x) AMU,.WHHWCW“ (x) a.e.

for some constants By vees B then it maximizes (**) in 5. If a test
(=) with FNoQHF.:.ﬁY it maximizes (**) in

() sE)=

$in B satisfies
the class of tests satisfying

fufidpses  G=Donm:
o) and Fa(x) =f(x[6) where 8,€8; and
a is reduced to the Neyman and

1 m=1 with fi(x =f(x|d
9,=0, are fixed, the above lemm

Pearson fundamental lemma.

However, except certain specific cases, there exists 1o general no

power 7 (¢ &) upiformly in 0E8, in the

class of level « tesis 2. An approach to 2 solution to this indeter-
s D to a subclass

4 certain criterion the clas
which maximizes the power

test that maximizes the

minacy is to restrict by
of D, in which we try to find a test
power function behaves well for the

as much as possible or whose
t & to a subclass of &

purpose of an apalysis. Criteria to restric

may be categorized as follows :
associated with the decision-theoretic structure

of a problem concerned, a natural structure is required for a test.

similarity and minimaxity,

1. Like invariance,

2. Like unbiasedness, an optimal

s required for the behavior of power function,
. power functions satisfy +his property is

i 1
property T and only

a class of tests whose
considered.

In addition, we may ad
D to = subclass consisting of a single test or to derive a test
a derivation method

5. Like the likelihood ratio {(LR) principle,

is adopted which gives 2 upique test without reference 1o the

d the following two more criteria to restrict

power function.

4. Like the studentization of a should-be- or may-be-good estimator,
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ad hoc or intuitive approaches are adopted.

Of course, these criteria are more ot less mutually related. In

fact, in most univariate cases and in some multivariate cases, these

approaches often give a same test. However, the principle of unbias-

edness or similarity is no longer effective in such incomplete
models as GMANOVA model, SUR model etc. which we concern

in this book, because of the lack of the completeness of the models.

Tor the completeness of 2 model an excellent exposition is found
in Chapter 4 of Lehmann {1959). On the other hand, the invariance
approach in 1 is often. applicable to incomplete multivariate normal
linear models. The likelihood ratio (LR} principle is also always
-applicable to any model whenever the formof the probability

*density is kmown though it often fails to give an explicit form of
. the test. The philosophy behind this LR principle differs from that

of the Neyman-Pearson theory and so it might not be appropriate

to compare the LRT (likelihood ratio test) to other optimal tests in

terms of power. However, the LRT is always invariant (see Lehmann

.{1950) page 252 or Eaton (1983) page 263),
ipcluded in the analysis through invariance. The ad hoc approach

hence it is naturally

1 4 is often difficult to 2pply in +he case of incomplete models

' because a good estimator is difficalt to find there. In addition, the

studentization of a good estimator does not necessarily produce a

good test (see Chapter 4). In some cases, approaches 3 and 4 are

. combined. For example, some parameters are frst assumed to be

known and a form of the MLE (maximum Jikelihood estimator) is

obtained under this assumption. Then the MLE is studentized and

some estimates are substituted for the unknown parameters which

were assumed to be known. Alternatively, assuming some parame-

ters are known, the LRT is derived and then estimates axe substi-

tuted for the unknown parameters. However even in these cases,

the tests thus obtained are mostly invariant. Based on these aspects,
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in this book we adopt the invariance criterion as our basic

standpoint but we do not completely neglect the other criteria.

1.2. Invariance. For theories on invariance, Ferguson (1968) or
Lehmann (1959) or Eaton (1083) will be served as basic references.

To describe the invariance principle in our testing theory, let

(1.5) PIO) = (P dPs/dp=Fx16) fixloyeF@)

where #(0) is given by (L. 13, and let ¥ bea group of bijective and

bimeasurable transformations from ¥ onto ¥ such that

(1.6) REP®) = gRePO) for any g €Y

wheze QHULEHSGJA%: for a Borel set A of Z. ‘When a given
model PO in (1.5) or F(8) in (1.1) admits such a group g, it is
<aid to be invariant under the group ¥ or ¥ is said to preserve
model 2(@). The relation (1.6) with the identifiability of F(@)
means that there exists a patameter g in @ such that gFo=Fu and
the correspondence between 8 and 8 is designated by 8'=g6. Then
F={g|geG) forms a group as 2 homomorphic image of &. In this

cituation, if the induced group ¥ leaves the testing problem (1. 2)

invariant in the sense that

(1.7 §(@)=86, and §i@,)=0, for any gEG

it is said that the testing problem is left invariant under the group
€. The condition (L 7) means that & preserves the hypotheses or
¢ preserves F(8:)'s. Now when a testing problem is left invariant

under a group ¥, we require a test function ¢{x) to be invariant;

(1. 8} $lgx) =¢{x) for all g=% and x=%,

and restrict our attention to the class of invariant level « tests,
say Dp The requirement (1.8) says that any point in the orbit of x
defined by -
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Tx={gx=Z|gEF}

is considered equivalent to x for making a decision on the problem.
That is, we reject the null hypothesis with the same probability
#{x) for any observation falling in ¥x Hence if ¢lx)Folxd), x;

and x, are on different orbits or Fx;+5x., A measurable function

Tix) from ¥ onto a measurable space J satisfying
@) Tigx)=T(x) for all g€¥ and
(b) T(x)=Tlx;) implies x;=gx, for some g=%F

is called a maximal invariant. Condition (a) says that a maximal

jnvariant is comstant on orbits whereas condition (b) says that each

orbit gets a different value, that is, 7' distinguishes orbits. There-

. fore an invariant test ¢{x) is expressed as

(1.9 ¢ (%) =4{T{x))

for some test 4 in J.

Also a maximal invariant parameter =(#) is defined to be a map <
from & onto a space ¥ such that .

©(@8)=1(6) for all FEF and

{d)==(8, implies 6,=gf; for some jes.

‘Here the measurability of T is not necessarily required though

‘it is wsually measurable. Under this situation, the following lemma

‘36 well known and easy to prove (see, e.g., Lehmann (1953) page

nggw H..N, The distribution of 2 meaximal iavariant T(x) under
g:depends on & only through a maximal invariant parameter z(d).
Hence for any ¢ &4y, the power function (¢, B)=EsLdi{x)] depends

on 0 only through =(6).

With this lemma, the problem of testing H:650, versus K :4

WQH in (1.2) is now reduced by invariance as follows. Let L7 be

the class of level @ ‘tests on the range space T of Tix} and let




(10  PF= (PTle=cl), PT=ReT™, REFE)

be the class of probability distributions induced by T= T(x) through
P@) in (1.5). Then the problem is regarded as

(1.11) 11 geel@®,) versus K s zeT(B)

and in this reduced problem, we wish to maximize in some sense

the power function

e D= ELA T 1=Elpl T () 1= ty=T, 6)

with respect to in &7T. In this maximization, the ﬁmmamnmmua&
Neyman-Pearson Lemma is applied to the class AT in (1.10). Or

we may stay with the original problem and try to directly maxi-

mize the power z(¢, 8) in the class of invariant tests Dr A test 9*
in O; for ¥ in DT with ¢p*=ny*eT a.e)is cailed a UMPI{uniformly

most powerful invariant) test if for any =Dy
zlg*, 8) = =, g) for all 90,

¢* in Dy for ¥* in D% with ¢¥=FT ae) is called an
any $&D; there exists an open

and a test
LBI (locally best invariant) test if for
neighborhood @, of & such that

wlg*, 6 = wig, 6 for all 8€6,— 6.

even in the class &y, there exist in general no UMPL

Of course,
"LBI test. But an LBI tests exist in many multivariate

test and no

testing problems under normality assumption.
To summarize, the following procedures are usually taken for

analysis of an invariant testing problem.

s the given problem invariant.

{1) To find a group which leave
under the group

(2) To choose a convenient maximal invariant

. found.
{3) To derive the distribution of the maximal invariant chosen.
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{4) To derive an optimal (UMPI or LBI etc.) test based on the
distribution.

(5) To derive or approximate the null distribution of the optimal
“test derived.

In addition, ome may also check the performance of the power

- function. For this purpose, one may consider the following things.

(6) To derive the nonnull distribution of the test and check the

behavior of the power function.

ﬁ_d To investigate whether the test is minimax or locally minimax

A test ¢* is called minimax in £ with respect to 4 if

infoey 3..@*. 9) = mﬁm@mawﬁmamhaﬁﬁ“ 6)

where 4 is a suitable subset of @,. The definition of local mini-

- maxity 1s given in Section 6.

.,@ To examine whether the power function is monotonically in-

. creasing as the parameter goes further from the null hypothesis

This property is often called the monotonicity property of a

power function.

2(9) To check whether the test is admissible tn & or evenin 0. A
test ¢* of level @ in D {or D) is called admissible if there exists

“no test ¢ of size & in D; (or D) such that

g, 6) = w(d*, o)
g, 8) < =%, 8

for all fE®,
for all 68,

and

with strict inequality for at least one E60,U@,.

(10) To investigate if the test is robust. In other words, one may

question if, when the model is enlarged, the null distribution of the

test remains the same and the optimality of the test is preserved.

‘Those properties are often called null robustness and optimality

obustness respectively.

Practically speaking, once the procedures from (1) to (5) are




performed, the problem is basically solved and the test can be
applied to practical problems. In particular, if a UMPI test is found,
the procedures from (6) to (9} can be saved, provided the invariance
principle is accepted. This is because the UMP] test dominates any
other test in &r in power. However, the UMPTI test does not always
exist and then one may look for a test with such a local ontimality
as LBI property. In fact, though it depends on the interest of
analysis, the LBl property will be an important alternative to the
UMPI property in the sense that when the parameter is far distant
from the null hypothesis, most of “reasonable” tests can detect

easily that the null hypothesis is false.

1.3. Significance probability. The Zowﬁmh-mvwmanﬁ testing theory
is frequently criticized for the arbitrariness of choice of significance
level. However, once an optimal test is obtained with critical region
of the form m=ulx)>¢, then +he test statistic z would be considered
a measure of showing how strongly the data contradicts (or supports}
the hypothesis. It is Dot guite so not only because the scale of u is
arbitrary but because it depends on the probaility law of x. A correct

measure is the significance probability or critical probability given by

(1.12) Gl (X0)) = SuPace, Polae (X} >% (o))

where x, is an observation. As {ehmann (1959) stated, it is good
and irportant practice to determine not only whether the hypothesis
is accepted or rejected at the given significance level, but also to
determine the smallest significance level &fulx,) in (1.12) at which
the hypothesis would be rejected for the given observation. This
sumber gives an idea of how strongly the data contradicts or supports
the hypothesis, and enables those who use the statistical result to

reach a verdict based on the significance level of their choice.

1.4. The following lemmas are sometimes used in this book.™
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‘Temma 1.3. Let f(x]@)=c(@)exp[I.0;t;(x)] be a density on %
with respect to 2 o-finite measure # where 6@ and & is open

in Rt Then for any integrable function ¢:(x), the derivatives of all
ﬂ_uummﬂm with respect to the 8/s of A(f)=| ¢{x)f(x|6) dp can be
computed under the integral sign.

Lemma 1.4. Suppose a group ¥ acting on X is generated by two

subgroups # and % and let s(x) be a maximal invariant under #

satisfying the condition :

s(x)=s(x) implies s{kx)=s{kx’) for any kSX.

Let & be the range space of s and let X *={k*|k*y=slkx) for y
~=s(x}, k€X', xZX}. ,H,..rob f(s{x)} is a maximal invariant under ¥

where £ is a2 maximal invariant under A

" These lemmas are found, e.g., in Lebmann (1959).

2, Maximality of a Group Leaving a Problem Invariant.

2.1.
“rized in Section 1, the first step to arvalyze a testing problem by

Normality preserving transformation. As bas been summa-

invariance is to find a group of transformations leaving the problem

jnvariant. There according to the invariance principle, it will be

mnmwﬂwgm to choose a maximal group if possible. The problem of

the maximality has never been explicitly questioned even in a

specific problem until Banken (1984), where a group leaving the

GMANOVA problem invariant is shown to be maximal in the

general affine linear group. Of course, such maximality should be

in general questioned in the group under the action of which a

given model is preserved. Then a maximal subgroup of the maximal

‘group preserving null and alternative hypotheses concerned in the

ode!l should be taken. In multivariate testing problems, it is often



the case that a normal linear model is adopted and a subgroup of
the general affine linear group is chosen as a group preserving the
normal model. In this section, we consider the maximality of such
a group preserving a normal model. Let R™ denote the set of all

nXp matrices and let

@1 PUbxB.(p)={NM, LA (M, Z) M X ()}

be a model of np-dimmensional normal distributions with mean
Mc At and covariance matrix of the form L®Z where MCRY is
4 set of mxp matrices (see Section 1 of Chapter 1 for the notation
N(M,L®Z2). This is a typical model we often encounter in multi-
variate testing problems. Since a transformation A in & group
preserving Pl x B Gee, PePlAxBdp) implies hP=Ph€
PlAK b, (p))) should bebijective and Lebesgue bimeasurable, let ¥ be
the group of all bi jective and Lebesgue bimeasurable transformations
from R™ onto R™ and jet#* be the group of 21l homeomorphisms
in . Then ¥* is a subgroup of #. The following theoretn charac-

terizes a transformation h in # which preserves the model (2.1).

Theorex 2.1. (Nabeya and Kariya (1984)) Let hRE¥, and let M*
ER™ (k=0, ..., %) satisfy
(2.2) for some cER?, M"¢'s aze not contained
in 2 hyperplane of R
Suppose that for any M=M® (&=0,.., n) and for any Ted (P
there exists (@', TSR % 3.(P) such that HR(X) ~ Niew, I,
RT &} when X~N(M®, [RZF). Then there exist constant matrices

Pedin), ASSIp) and HeR™ such that

(2.3) Alx)=PxA+H for a.e xER™.

The condition (2.2) in Thecrem 9.1 is always satisfied for the
model (2.1) if the space A of M is Rr™. However, if M= Rfopvm
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R M,=R™}, a transformation k in % which is not of the form

following

(2.3) can preserve a normal model as is shown in the

example.

Let n=2 and p=1 and let
POX 2.0} = (N0, Lo*)|e*>0}
Then & defined by

. Example 2. 1.

—sin{zi+ 2B\ [z,
cos{zi+za/ \Ta

z, coslai+xi)
h{ ) =

s, sin{zi+z3)

preserves J0x 4.(1) and it is easy to see he#. Let¥#* be the set
‘of h in ¥ preserving POx (1) Then ¥* is easily shown to be

“a subgroup of ¥.

M,
0

=R™|M,ER™} with =2, the

- .Hrwm implies that when #={

subgroup of ¥* defined by

‘#, = {h|h{x)=PxA+H for some (P4, H)S0(n) x §1(p) x R},

not a maximal subgroup of X* for preservation of model PlA %

,&.,chz iz (2.1). For example, let

X; M,
um o

2.4 X= , LRE) with (M, Z)ER™ XA (2}

.m,m. canonical form of the MANOVA model. Then the group ¥,
Hﬁﬁﬁuxahsiﬁux%zﬁxw,ﬂ acting on X by

Hw NJH 0 N.u hm-u.
— A+
X, ¢ I AX Y

pot a maximal group of #* preserving (2.4) where Iy, I's A,

FieX, In fact, the model in Example 2.1 is a special case of

this model with m=0, »=1 and n=2. However i we reduce the

model (2.4) by sufficiency to
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.Nu\.(zh ..:.N.S@MJ‘ ,NWN.N)\.&\%M~3[.3&

(2.5) .
X, and XiX, are independent,

where (M, ZYER™ % 4,(p) and W,(Z, n—m) denotes the Wishart
distribution with mean {(n—m)2 and degrees of freedom n—m, then
we obtain that the group ¥,= Gln) % BLP) X R™ as a group preserv-
ing (2.5) where ¥, acts on (X, XX by

B(X., XiX)=(PX,A+F, A XX A for h=(P, A, F)EX,

is maximal in %  Here 7 denotes the group of all bijective and
bimeasurable transformation from R™x4.(p) onto itself and #*

denotes the subgroup of homeomorphisms 1 F.

Theorem 2.2. (Nabeyaz and Kariya (1984)). Let reEX and n—m
>, and assume (2.2) for the space of M. Suppose that for any
M,=M®(E=0,1,-,n) and for any Ted.(p), there exists (@F,FW)
cR™x 3,(#) such that when X ~NMP, LI, S~W,(Z, n—m)
and X; and S axe independent, then By (X, S) ~ N@W, L®I),
Rl X, 8 ~ W,(Z, n—m) and A;(X;, S) and hiX;, S) are independ-
ent, where R{Xy,S)={{X:, S), hlXn S)ER™ x d.(p). Then there
exists (P, 4, F)EX, such that

RUX, S)=(PX, A+F, A'SA}  ae (X, SYER™ % B.{p).

This theorem implies the maximality of #, in ¥*. Tt is noted
that the condition (2.2) holds if the space of @, contains the space
{6,€R™(6,=8,0), 8<R™}. Hence it holds in particular if the space
of 0, is R™, which is the case of the MANOVA problem. On the
other hand, even if we start with the group #, which is not maxi-
mal in #* we eventually get the model (2.5) via Lemma 1.4
because X1X, is a maximal invariant under the subgroup Olz—m)
of #, acting upon X; by Xp—P.X,. Therefore, though #, is not
maximal in J* as a group preserving the model (2.4), the inva-
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riance reduces the model in (2.5) upon -which the group #, acts

and #, is maximal in %

3. Distribution of a Maximal Invariant.

3.1

when a testing problem (1.2) is left invariant under a group &, it

Representation theorem. As has been stated in section 1,

“is a usual procedure to choose a convenient maximal invariant

{step(2)) and then derive the distribution of the maximal invariant

(step(3)). However, sometimes maximal invariants are too compli-

cated to analytically treat, which is the case of GMANOV A problem.

In addition, it is not always mecessary to derive an explicit form

of the distribution. Indeed, when we are snterested in locally

optimal tests, we simply need a local form of the distribution in

&.mrm neighborhood of the aull hypothesis (see Section 4). In such a

‘ease and also in other cases, what is known as a representation of

the probability ratio of a maximal invariant is very useful. There

re several versions of the representation concerning conditions on

he group leaving 2 problem invariant and the sample sapee acted

ﬂwoa by the group, but all of them give the same expression:

aFy, { ftaz18xlg)»ds)

- .—.m.“n@ungavxggtﬁmv

R (T(z))

"

(T (=)

LGB

- dPT

Here Tiz) is 2 maximal invariant, PT is the distribution of Tix)

under 6, Flz16) is a demsity with respect to a relatively invariant

easure g, 9 is 2 locally compact group, ¥ is a left invariant

‘measure on § and x(g) is a multiplier function of p fi.e. plgd)=
() plA) for g=F and a Borel set 4), which is the inverse of the

acobian z—gx in the case that ¥ isa matrix group and sample

pace ¥ is a subset of an Euclidean space. A few sets of precise

.w.u&mobm for which (3.1) holds are stated below. The representation
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says that the Radon Nikedym derivative of the distribution

with respect to that under 6, is,

(3.1
of 2 maximal invariant under &
when evaluated at T=TI{z), given by the ratio of the integrals
of the densities under g, and 0, over the group % In testing

problems, & and 8, are respectively chosen from the alterpative

hypotbesis space @, and the null hypothesis space & s0 that (3.1)
represents the likelihood ratio of Tz under 6, and 8. Hence if
the null distribution PT oof a maximal invariant T is the same for

all 6,£0,, which is true when @, is simple, 2 test with critical

region R{T(z))>¢ is by the Neyman Pearson Lemma MFI (most
or testing ©, versus the fixed 6, in &1 It
the test happens to be independent of f, it is UMPI for testing &

versus ©;. In case that 2 locally optimal test is interested in, the
of -8, and the

powerful invariant) test f

is expanded in the neighborhood

ated locally. In these procedures, it is not necessary

ratio in (3.1
integral is evalu

to choose an explicit form of a maximal invariant Tl(x) and step

(3) can be skipped.

Historically it was Stein (1956) who first gave

3.2
the expression (3.1), but he did not explicitly state the conditions

for which it is valid. Stein’s representation was applied by Giri
{1965) and Schwartz (1967) etc. In a line with Stein, Schwartz
{1966} gave a set of conditions for the validity, but his conditions
plicated. - His result is introduced in Farrell (1976).

References.

are rather com
Wijsman ({1966, 1967) took a differential-geometric approach and

gave a sufficient condition for (3.1) by using the concept of Cartan

& space. Koehn (1970 mﬁpmnmmw& some results of Wijsman (1967),
while Bondar (1976) considered conditions for (3.1) through a topo-
logical argument. Recently taking Bourbaki’'s approach and using

measure, Andersson (1982) established some results
p. Wijsman

a quotient
concerning (3.1) in terms of proper action of the grou
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(1983) studied on the properness of the action in applied problems.

Purther Wijsman (1984) also studied on the global cross-section

for factorization of measures and applied it to the representation

of the distribution of a maximal invariant.

3.3, Andersson’s approach. Based on Bourbacki’s approach, An-

dersson (1982), using quotient measures, obtains the representation

of depsities of maximal invariants. His framework is relatively
- gimpler than Wijsman’s (1967), as will be seen below. Let & be

a locally compact sigma-compact Hausdorf topological group and let

: % be a locally compact sigma-compact Hausdorff topological space.

Suppose ¥ acts topologically on & (i.e., the map FX % 3(g, x}—g¢x

&% is continuous). A left (right) invariant measure on g is

denoted by w{y. respectively), and let /€ be the gquotient space

Z/6=02 with quotient topology. In Andersson (1982), the natural

_projection = from & onto the quotient space { is taken as a maximal

invariant. In fact wlx)=gz for z€X is & maximal invariant.

‘ Further let filx) ({=1,2) be two probability densities on X with

. respect to0 a relatively invariant measure p with multiplier y {i.e.,

gAY =xlg)pld) where g% and A is 2 measurable subset of ).

Under this set-up, a sufficient condition for the representation (3.1)

to hold with T=m is provided by the notion of a proper action:

Definition 3.1. Consider the map K of EXX into XX given by

Klg, x)=(gz, z). Then the action of § on ¥ is said to be proper if

"K-HC) is compact for each compact subset CCEXE, and the space
 is called a proper G-space if the action of & is proper.

Theorem 3.1. (Andersson (1982)) Suppose @ acts properly on .

Then the probability ratio of the maximal invariant = under f; (¢

=1,2) is given by




dPE | oFelgzixig)vitda)

S = a.e.(PI).
Rim{z))=——lz (2} .?%H@Hvx@ vildg)

3.2) ;
h dary

A proof of this theorem is sketched in Appendix.

The Definition 3.1 of the properness o the action of Z is not
s0 easy to handle as it stands. To give a set of equivalent conditions,
define for 4, BCZ,

(3.3 (A, B)={¢=F|gANB+D}.

Definition 3.2. % is called a Cartan Y-space if for each zEX,
there exists 2 neighborhood V of z such that {((V, V)) has compact

closure.

Lemma 3.1. Under the present set-up the following conditions are

equivalent.

(1) ¥ acts properly on z.

(2) For any = and y in ¥, there exist neighborhoods V. and V,
of z and y respectively such that ({V., ¥,)) has compact closure.

(3) ¥ is 2 Cartan §-space and Z/§ is Hausdorff.

(4) For KCX¥ compact, ((K, K)} has compact closure.

Proof. The equivalence between (1) and (2) follows from Bourbaki
{1966) ITI$4. 4, Proposition 7, while thel equivalence among (2), (3)
and (4) follows from Palajs (1961) Theorem 1.2. 9.

As a matter of a fact, the sigma compactness of Gand ¥ assumed
in our set up is not necessary to obtain the result in Lemma 3. L
Tt is also remarked that if A and B are compact in x, (A, B) is

closed. The following resuit is useful in application.

Lemma 3.2. (Palais (1961) 1.3. 3) Let ¥ be a locally corapact space
acted upon topologically by a locally compact group . Thenif ¥
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is a proper (Cartan) Y-space, so is X Y.

Wijsman (1983) develops a useful tool for proving the action of
% on X proper.

3.4, Wijsman's approach. Let ¥ be a nonempty open subset of

R", € a Lie subgroup of the gemerzl linear group Fl(z} acting

linearly on %, and v Lebesgue measure on Z.

. Theorem 3.2. (Wijsman (1967}). Suppose ¥ is a Cartan H-space.
" Then (3.1) holds with x(gl=|g'g|** for gEF.

The proof requires some knowledge on differentiable geometry.
‘It is remarked that Wijsman (1972) extended the result to the case
: where & is a2 Lie subgroup of the general affine linear group.
Though the set up for ¥ and ¥ in Theorem 3.2 is more restric-
tive than that in Theorem 3.1,

as is shown in Lemma 3.1, the

condition for X to be a Cartan FH-space is weaker and easier to
check than the condition for & to be a proper H-space. In Chapter
3, Wijsman’s theorem is used, while in Chapter 5 Andersson’s

theorem is used for comparisom.

“To state a condition for Cartan ©-space, let § be a locally
.compact group and % a completely regular Hausdorff space. When
€ acts freely on ¥ (Le., g=#e implies gzsz for all z€X), ¥ is
said to be a & principal bundle. If ¥ is a ¥ principle bundle, for
‘each (x, 7,) there is a unique element flx;, z,)ER such that z,=
Flay, z)x; where

B={(zy, 7, EXE X X |2y =g, for some gEF}.

Hence if f is continuous from 2 into ¥, X is called a Cartan
principal bundle.

Lema 3.3. (Palais (1961) 1.1.8) A Y-principal bundle % is a




Cartan principal bundle if and only if it is a Cartan F-space.

As an example, Hwﬂ, as consider the MANOVA problem. Let X':
axwzza ), 1®3), where X=(X) with X:taxp (=12, 3), ©
={0) : (n,+7) P with 0;:nyxp, (7=1, 2) and 7y FnetH=n with
nyzp. The MANOVA problem tests @,=0 and the group F=0(m)
R Oz X Olng) X GLH)Y ¥ R™F aets on the space of X by

(X, X X — (X, 4'+F, XA’ I X, A7)

where q:.ﬁsﬁeb,m&m%. Tt follows from Lemma L 4 that 2

maximal invariant is a funetion of X, and X, Hence letting
Z,={xe=R"**| rank(x)=min(z, p)} =2 3),

it suffices to show that ¥,x%; is a Cartan Olna) X Glns) X Gl(p) space
hecause R x R —%, % %; has measure 0. Further, since Ozg) X
@(ns) is compact, by Definition 3.2 it suffices to show that ., x X
is 2 Cartan SI(#) space. But by Lemma 3.2 and 3.3, it suffices to
show that XoAd'=X; for XEX, jmplies A=1, which follows from
the definition of &, and 7m=p. Therefore by Theorem 3.2, the
probability ratio of a maximal invariant is given by (8.1) where
E=00n,) X Olng) X FL{P), FlX., X,i9) is the density of (X, X3, 6,=(0,
2, 8,=(0, %) and xlg)=1AA|"*"/% is the inverse of Jacobian
of (Xa Xi) — g X Xo) for g=g.

4. Locally Best Invariant Test

4.1. Derivation of an LBI test. In this section, a basic idea for
deriving an LBI (Jocally best invariant) test is provided. As was
done in Section 1, let ¥ be a nonempty open subset of R" and let
€ be a closed subgroup of an affine linear group acting on the left
of . To apply Wijsman's representation theorem described in

Section 3, it is assumed that X isa Cartan ©-space. Let F(@ }
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denote a class of probability densities with respect to Lebesgue

measure on £ such that each density in F(6) is of the form

flz|8)=

(4.1) BO)gyr(x: 8}, 0@ ,

. where 8, ¢ and ¥ are kaown functions, ¥ : ExO—ER, is a mea-

- surable function for each fixed 8, ¢ is a fixed integrable function
from R, into [0, ©) and © is a nonerupty open subset of R”. In a
normal model, glz)=exp(—z) and y(x : 8} is quadratic in x. Suppose

the group ¥ leaves invariant the problem

H:9=6, versus XK : 08,

Then by Theorem 3.1, the ratio of the distributions of 2 maximal
“invariant T=t(x) is given by

. (4.2) &wﬂ\mwla (x)) =H (x]6,)/H(x| )

with

(4.3) Hizlo)= [ ,Flox|0lx(g)»(dg)

where §,€6,, P¥ is the distribution of T under 8, x{g} is the

inverse of the Jacobian of transformation x—gx and » is an inva-

riant measure on ¥. Here assuming that ¢ and 8 are continuously
‘twice differentiable, we expand the integrand in the numerator of
he ratio in (4.2} as

flx18:)

SCW == (B0 +0,) {glirlx = 6,))

+ @M {1 Be)) [l £ 8;) —e{x 2 B5)]

L@ x 00, 0,1) el ¢ 8) —Pelx 6037
where B{,)=8(8,)+0, with oy=0{| 18,—8,] ), .%..*?n 16y, mau"oj_\.ﬁ.& 16,
.n*..ﬁlnr_i& 1 6,) for some 0<ec<l, and ¢gW=@&g/dz", Here |[|a|!

enotes the Euclidean norm. Then with D=H(x|6,), the ratio Rin
4,2) is expressed as




4.5 1+ .—.MQE (g, Bo)) [drlgx 9, —prigx : moﬁxﬁ&vﬁmhv\b.ﬂug

where M=M(x:6,08) is 2 remainder term. Here if we can show
that the second term is expressed as ¥(0,, gslx) witk v(6;, AR
O{| 18, —81 1) and that for any invariant test function ${x) of size &
we [boMix: 6, 09dPh=ol 1,—8,]1) uniformly in ¢,
then from (4.5) the power function of ¢ is given by
@wn  wlp, s =at+Elpx)vE 9o)s(x)J+o(l16:—6 1)

by the Generalized Neyman-Pearson Lemma stated in
is LBL Sometimes the second

in which case higher

Hence,
Section 1, the test based om s{x)
term in the right side of {4 4) vanishes,
order derivatives of ¢ need to be considered. In this manner, most
| LBI tests can be derived. In fact, our LBI tests in this book are
_, basically derived in this way {see, e.g., Kariya and Sinha {1984)).
|

| 5. Distributions of Test Statistics

| 5.1, Null Distribution. Once an optimal test is derived, the null

! distribution of the test statistic is aeeded to obtain eritical points.
i But as has been mentioned in Section 1, what we really need in
reporting results will be significance probabilities. In most multi-
variate testing problems, it is however difficult to derive the exact
i aull distributions of those optimal tests or to compute the signifi-
cance probabilities. Even i the exact null distributlons are derived,
_ they are often too complicated to use without the aid of a computer.
ﬁ In fact, they often involves matrix variate hypergeometric functions

or Zonal polynomials. Here by derivation, it is usually meant that

the distributions are expressed as 2 form where no incomputed

integrals are involved however complicated the form may be. But
2 computational

sometimes, a simple integral form suffices for
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purpose. In this sense, a common computational program package

will be desired to be developed to compute the significance pro-

. ,..cm..cwmmmm for normal models. To illustrate a typical case, let u=ulx)

be a test statistic with critical region u>c and let fix) be the density
of N0, I®IL) under a null hypothesis where x : nXp. In fact, the

aull distributions of most tests treated in normal models do not

depend opn unknown parameters or the tests are similar, so that we

‘may assume N0, L&L). In particular, if a group leavesa problem

invariant and if the induced group acts transitively on the para-

meter space under null hypothesis, then the null distribution of

‘any invariant test is free from unknown parameters (see also Section
9). In such a case, N(0, I®I, can be assumed. Then the null

: m,.p.m_”aﬂcﬁﬁoa of u=u(x) is obtained by

Flug)=Plax) St = [ utorsf (X}

H.H,.mUnw for a given observation X%, what we need is to evaluate the

umerical value of this integral with z,=u(x,) through a computer

so that we obtain the significance probability 1—F (z,). Of couse,

sometimes it may be useful to obtain an explicit form of Flu,) in

terms of e.g., a power series, but it is not always required for a

omputational purpose.

On the other hand, in the case of comparatively large samples,

the null distributions are often approximated by their asymptotically

xpanded expressions up to certain orders of the sample sizes.

‘The derivations are often made by first expanding a test statistic

tochastically {or in the concept of in-probability) up to 2 certain

order, then evaluating the characteristic function of the expanded

statistic and finally inverting the characteristic function. However,

he question of the validity of this approach is often left open in

articles so that the expansion is formal. On this problem, Bhattach-
arya and Ghosk (1978) and Feller (1966) may be good references,




(see also Kariya and Maekawa (1981) and Fujikeshi (1984}). In

this book, the validity .of our expansions is also left opemn.

5.0. Nonnull distribution. The exact neonnull distributions of
optimal tests in multivariate testing problems are still more difficult
to derive and even if they are obtained, the expressions are often
intractable to deduce some results on the behavior of the power
functions. On the other hand, to obtain asymptotic expansions of
+he nonnull distribution, it is usually required to confine the alter-
native hypotheses to a coniour in which they come closer to the
aull hypotheses in certain orders of sample size 7 as n gets larger.
This is because \nﬁm tests considered there are consistent or the
power functioms go to 1 as z increases under a fixed parameter
point. In this sense, the information we can collect through the
nonnull asymptotic distributions is about the local behaviors of the
power functions in the neighborhood of the pull hypotheses. If 2
test is LBI (locally best iovariant), it should have a good property
1o the neighborhood of 2 aull hypothesis though the asymptotic
expansion of the nongull distribution of the TEBI test may be inte-

resting to make a comparison with those of other tests.

6. Local Minimaxity

6.1. Minimazxity. For testing problem (1.2), 2 test ol mb the

class of level c tests & is called minimax in £ with respect to a

contour 4 i .

(6.1) infees (0%, B)=suDsesinioes TP, 8)

where 4 is a subset of the space 8, of the alternative hypothesis.

Since & includes the trivial test po=cs, the right side of (6.1) is
not less than «. Hence if the power function = {¢, 8 is continuous

for each $&D (which is guaranteed if the model (1.1) -is an
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and if &,nB,+¢, any testis

where &;

exponential family (see Lemma 1.3)),

minimax with respect to 4=6. denotes the closure of &;

{i=0,1). This is why the minimaxity is restricted to a contour 4

om ©,. When the given problem remains invariant under a group

%‘ it is often the case that 4 is chosen to be an orbit defined by

2 maximal invariant parameter T=<1{6) ;

(6.2 = {80, |t=7(6)},

mbm that it is asked whether a UMPI test is minimax in & {notin

L o0 with respect to 4. for each 7. A typical way to show minimaxity

is to use the well known proposition thata (an extended) Bayes rule

with constant risk is minimax {see e.g., Ferguson {1967) page 91).

Of course, the power function of an invariant test is constant on

each orbit 4, in {6.2) since it depends on & only through ={8}.

‘Hence if an invariant test is minimax with tespect to 4, for all =,
it must be UMPI by the definition of (6.1). On -the other hand,

.according to the Hunt-Stein theorem, if 2 minimax test with respect

o 4, for each = exists, it can be found in the class of invariant

ests of level a. Teo state the Hunt-Stein theorem, let ¥ be a locally

ompact and sigma-corpact group with Borel sigma-field £ and
mEuHuOma the problem (1.2) under the model F(@) in (1.1) is left

avariant under %. Further assume the map (g,x)—rgx is jointly

measurable.

heorem 6.1, (Hunt-Stein Theorem) Suppose the following condi-

] (HS) There exists a sequence of probability measures {»,} on
(G,2£) such that for any gEF and BeZL

..—wﬁn.:.vs _ tuﬁm.w.u Itxm.mv |=0.




Flgz)=flz) a.e. AR

A proof is found in Lehmann {1959) p336. Bonder and Milones
(1981) looked into the various conditions for which the theorem
holds. In particular, itis shown that the condition (HS) is equivalent

to the existence of a summing sequence :

(S} There is a sequence {B,} of compact subsets of § with B,.C
By, 0<p(B,)<<e0 and &=UB, such that »(B.gU B.)/v(B,—1
upiformly in g on compact subsets of © where »is a right

invariant measure on 5.

Also it is shown there that (HS) is iraplied by Stein’s condition,
which in turn is implied by the solvability of & (see also Kudo
(1955) or Kiefer (1957) for the latter implication].

A remark is that one can get an invariant test from an almost

invariant test by the following lemama.

(See Lehmann {1959) page 225). Assume (1) (%,B,K)
(2) a group 5 with a sigma-field

Lemma 6. 1.
is = sigma-finite measure space,
& acts oo %, (3) the map (g,x}—gx is measurable and (4) there
exists a sigma-finite measure » on # such that for any g&.f and
Be8, Bge& and if »(C)=0 for some Cc.#, then »(Cg)=0 for any
g=#. Then for any almost invariant fanction flx) on %, there

exists an invariant function klx) such that hlz)=Ffiz) a.e.

{n applying the Hunt-Stein theorem to a testing problem, the
condition (HS) is rather restrictive. In particular, the general linear
group Flin) (n=>2) does not satisfy it {see Lehmann (1959) Section
8.4, Example ¢). Butin fact, it is pointed out in Bondar and
Milones {1981) that the converse of the theorem holds when % isan
almost connected group- Usually if a group ¥ leaving 2 mrwdmb
problem invariant does not satisfy (HS) condition, we take a solvable
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wﬁwmaoﬂw G, of F and try

to show the minimaxity of a given

[UMPI} test in the class of Fo-invariant tests. However, even in

_.momﬁm so, it is in gemeral difficult to verify the rminimaxity. The

. minimaxity of Hotelling’s T test was questioned by Giri, Kiefer

“and Stein (1963) and it was shown for a very special case. It was
Salavaevskii (1968) that established it for a general case with

surprisingly voluminous computations.

6. 2.

no UUMPT test exists so that no invariant minimax test with respect

Local minimazity. In most multivariate testing problems,

to all the contours (6.2) defined by a maximal invariant parameter

¢ exists. But as has been pointed out, there often exist LBI tests

in those problems, to which the coacept of local minimaxity

-corresponds. In fact, Giri and Kiefer {1964) created the concept of

‘local minimaxity as follows. Let (%,5) be a Borel measurable space

where ¥ R" and let p(-:4, &) be a density with respect to a o-finite

measure j# where 4 is a real parameter, £ is nuisance parameter

nd the range of £ may depend on 4. Consider a testing problem
H,: 4=0 versus 4=x >{.

Definition 6.1. A test ¢* is locally minimax of level al0<a<1)
or testing H, - 4=0 versus 4=x as A—=0 if

. infe w{g*, MEN—a _
limsg supPgeninf; 7., (A8} —a =1

(6.4)

ernm =g, EN=E{$|N£] is the power function of ¢ and D is the
class of level o tests.

“Giri and Kiefer (1964) gave a sufficient condition for a given

test to be locally minimax, which is stated in Chapter 3. In

tvariant testing problems, 4 will be a function of a maximal

invariant parameter and § will belong to a contour defined by 4=

and in showing an LBI test to be locally minimax with respect
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the class O in (6.5) is replaced by the class of
(HS)

to this contour,

level a tests invariant under a group satisfying the condition

in Theorem 6.1,

7. Monotonicity

7.1. Monotonicity. We consider a monotonicity property that
power increases as the parameter goes far from the null hypothesis.
In an invariant problem, as has been stated in Section I, the power
function (L.3) of an invariant test yrIs a function of a maximal

invariant parameter T=t(f)

2, O=ELW(T)]  6€68,U6:

Here 7 is assumed to be =(Ty, ey Tp)' With 7,2...27,20 and to

satisfy ©{@)=0, whick is 2 typical case in multivariate testing
if #{yr, ) is am

where -T; moves

Then 4 is said to be of monoctonicity

each 7; for fixed ;s (j¥1i),

problems.
increasing function of
of 4 of course

over the inmterval [Tiy, Tend- The monotonicity

implies the unbizsedness of 1 :

g, T2 for all zez(®) lor 88y,

Tn situations where there exist UMP or UMPL tests, the power
functions are usually funections of a single parameter and of
monotonicity, which is often implied by the monotone likelihood
ratio property of the densities (see Lehmann (1959) Chapter 3). On
the unbiasedness of invariant tests, Perlman and Olkin’s paper (1980)
will be helpful as a reference which includes a survey as well as
new developments in this area. As is pointed out in their paper,
the unbiasedness and monotonicity properties of the 1.BI (locally best
invariant) test in the MANOVA problem has remained an open

question. This implies that the unbiasedness of the 1LBI test in the
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”...QZQVZO&CP problem is a harder problem to settle. The difficulty
the LBI tests stated in Section

may be related to the drawback of
4 of Chapter 3.
To show the monotonicity property of an invariant test,

the

following lemma is often used (which is an application of Anderson’s
H.rmOnm.B (1955) in Das Gupta, Anderson and Mudholkar (1965)).

Lemma 7.1, Let Xy,...,x, and Y be independent random vectors

‘and matrix where Xt pX1~Np,Z) =1 ., 8) and Y be any

...H..mﬂ@oﬂ matrix. Suppose a set C {regarded as an acceptance region)

is convex and symmetric in Xx; for x/'s

in the space of (Xy,...,X,X)
ind ¥ being fixed (f=Fi). Then the probability P(C¥) is increasing

n each A

8.  Admissibility of Tests.

8 1. Conventional approaches. As has been stated in Section 1,
test ¢* in the class Ty of level @ tests is called admissible if
there exists no test ¢ in Dy (or Lral such that =(p, 8)=m(p*, 0) for
2]l 628, and wig, O==(p*, 8) for all §=@, with strict inequality
Sr at least one #€6,U0,. As methods for showing this property for
given test ¢*, Kiefer (1966) listed the following;

‘ﬁmv the Bayes method, of showing that a procedure is unique

Bayes with respect to some proper prior distribution,

(b) the method which uses exponential type, and

(¢) the method based on Jocal properties.

aking use of the method (o), it follows that the unique most
Mo,éonmﬁ (MP) test for testing 6€0, versus g=0,=0, where 8, is

u.nmm is admissible because no other tests dominate the MP test at

9=9,. In particular, the unigue UMPT test and the unique LBIL
admissible in . Thus the LBI tests we derive in the

test are
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GMANQOVA problem, an extended GMANOVA problem, the pro-

blem of testing on Rao's covariance structure etc., are all admissible.
However in these problems, the admissibility or inadmissibility of
the LRT’s and other celated tests is bard to establish by the
methods (a},(b) and {c). In fact, for the method (a}, it is very
diffcult to find in our problems the prior distributions that yield
the tests concerned. In Kiefer and Schwartz (1965) and Schwartz
the admissibility of a lot of tests

A difference between the problems

(1967) showed by this method
often encountered in applications.
treated there and our problems treated in this book is that our
model possibly reduced by sufficiency is still an incomplete model
whick allows an ancillary statistic. .

The method (b) is developed by Stein (1956) and is applied to
problems such as the MANOVA problem, the problems of
by many authors (e.g., see Schwartz

many
testing independence etc.
(19672)).

In an exponential type model of completeness, Matthes and
Truax (1967) obtained the minimal complete class of tests consisting
of all admissible tests. Here 2 subclass Brx of Lre is said to be
essentially complete if for any test ¢ in Dy, there exists a test ¢*
in Gyq such that =(¢*, gy =m(p, f) for all 66,. When the inequality

is strict for at least ome 928,, Gr, is called 2 complete class.

Hence a test which does not belong to a complete class is not
admissible.

Even in incomplete models, the method (b) is applicable. In the
problem of testing on means with covariates, which isan extended
GMANOVA. problem, using Theorem 5.8 of Wald (1950) that the
closure of proper Bayes tests under weak* limits is an essentially
complete class of tests, Marden and Perlman (1980) characterized
the weak*® limit of sequences of Bayes tests and cbtained necessary

and sufficient conditions for edmissibility. Applications of the
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results yields the inadmissibility of well-known tests in the problem

. such as the studentized test based on an efficient estimator and the

LRT with a restriction on the significance level. Using the same
approach, Marden (1981, 1982, 1983) extended the results to the
GMANOVA. problems, the problem of testing independence with
incomplete data treated by Eaton and Kariya (1983}, and the problem

of testing a hypothesis against 2 multivariate one-sided alternative.

9. Robustness

9.1. Null robustness.

studied from the two sides: (1) Robustness under null hypothesis

Robustness properties of a test may be

and (2) robustness under alternative hypothesis. We first consider

(1). By (i) it is usually meant that the critical point of a size

« test computed under an assumed model, say F(O)={flx|6)| 66}

in (1.1), is stable against a departure from the model. That is,
even if the model (@ in (1.1) is enlarged to

x©) =

{h(x|0)|6=8, hEX],

1) means that the critical point computed under the null hypothesis
.m. the given demnsity f(x|6) defining F(@) is effective or approxi-
tely effeictive for all £ in #(6), where ¥ is a class of densities

aving the same parameter space as f and containing f. But here
we call a test null robust in #(®) if the null distribution derived
nder F(@) in (1.1} remains the same for all 2 in F(0). Null

obustness in this sense has been considered in z class of elliptically

“ontoured distributions or left orthogonally invariant distributions
v many authors (Dempster (1969), Dawid (1977), Kariya and Eaton
ﬁwﬂqv, Chmieleswki (1980), Kariya{1981), Jensen and Good (1981},
Eaton and Kariva (1984) ete.).

,.H..Hwﬂm we introduce the results due to Kariya(1981). Let O(n) and
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S.(p) denote the set of mxn orthogonal matrices and the set of
X p positive definite matrices respectively as before. For an nXp
random matrix X, let Z(X) denote the distribution of X. We shall
call X left O(n)-invariant about M freX-M N=LX-M) for all
Qcain). Also, we mva,.w call £(X) elliptically symmetric about M
with scale matrix TE2:{p) if Ligy)=~ly) for all g=0(np),
v=Yss e ¥ul's Y is the i-th row of Y= (X— M2 Let r={X:

nX .ﬁ_nmﬂwrﬂﬂﬁ and throughout this section n=p is assumed.
Further, let Fo(M) and ¥ (M,I,®3) denote respectively the class
of np-dimensional left @{x)-invariant Jistributions about M such
that PX—MeX)=1 and the class’ of np-dimensional elliptically
tions about M with scale matrix TES.(p) such

where

symmetric distribu
that P(X—MeX) =L Clearly

M, LRNCSF (M) for Al M:nxp and ZES.(P)

¥ 2XNeF =M, L®Z) has a density, it is expressed as

(9.1) AXIM, 2= _M..#lSm:uM;Angﬁklgr

where g [0, 00)—~0, 20} and if LX)eF (M) has 2 density, it is
expressed as ’

(9.2) FX M) =y (X— M) (X~ M),

where 4 : $+(2)—00, o). A left O(n)-invariant distribution which is
not elliptically symmetric is the matrix variate -distribution, whose
density is m.wﬁwu by

%orﬁun:v+¢NIEE,N.IEV_..?.t_:w
Frazer and Ng (1980) treated

s multivariate regression model with this distribution for the error

where ¢ is a pormalizing constant.

term.
In most multivariate hypothesis testing problems, £(X) is assumed

-

to be mormal:
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ZX)=NM, 2) M:naxp b (np).

(9.3)

Here E(X)=M and Cov{x)=2, where x=1{%X;, ..., X}’

i-th row of X After transformation, many null hypotheses can be

and x; is the

‘stated as

(9. 4) H: M, Z)=@,x 4,

“where in (0.3}, 2=L®Z, Teb(p), and O, X L,CR™ x b.{p). It is
“noted that when 9=I®Z in (9.3), therows of X are independent

‘with common covariance matrix 2. Here we assume

(9.5) 0=8,, or €, contains 0 in R,

Usuzlly, this assumption is satisfed; if necessary, replace X by
_ M, and @, by &,—M,, where M, is a fixed point in €. Typical
problems of the form (9.4) with (9.5) are the MANOVA, GMA-
.Z.Odﬁ? problems, the problems of testing independence or equality of

ovariance matrices or sphericity. In these problems, except for some

‘special cases, there exist no UMP (uniformly most powerful) tests

nd usually many tests are proposed in each problem. A feature that
:these tests have in common is similarity, which is often implied

In fact, under the mnull hypotheses in invariant

v invariance.

the groups leaving the problems invariant often act

problems,

ransitively on the parameter space 8, % 4, so that the null distri-
ution of these tests do not depend on (M, Z)E0, X4, and the

let us consider the unigueness of the

tests become similar. Now,

ull distributions in ¥ and Fg, where

Fr=U{F LM MEB,}

Fp=U{F M, LOZ) (M, ) €6, X 4o}

et T={ZcX|Z'Z=1}. Let Fl(#) denote the group of #xp aon-
(oxr ET(#}) denote the group of

ingular matrices and let F%(p)
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pXp nonsingular upper (or lower) triangular matrices with positive

diagonal elements.
Below, t(X) denotes a test statistic for the problem (9.4) with

(9.5).

Theorem 9.1 A necessary and sufficient condition for Z{t(X)) to
remain the same for all £(X)eF, is that when Z(X)=NM, L&
X), the following conditions (i) and (i1 hold:

(i) HHﬁANIE:HHEN: for all Me6, and all T, (p).

(ii) ZX)y =L {2} for M=0 and all Tedlph

where X=Z A with Ze=Z and ASS.(p).

Corollary 9.1 The aull distributuion of #X) is unique in F, if
the following conditions @)’ and (ii)” hold:
(i)’ t( X— M) =t(X) for all ME8é,.
G’ HXC)=t(X) for all CEB,(p) or for all CegUlp)
Ceg7(p).

or for all

Corollary 9.2 If (' and (i)’ hold, £{tX)} is unique in Fa.
To apply Corollary 1.1 to 2 specific test, conditions ()¢ and (i)’
need to be verified. Usually ()7 is satisfed, but (i)’ is mot in

In iovariant problems, if the groups leaving the

most problers.
problems invariant contain as 2 subgroup B (p) or FUlp) or ‘g
(£) acting on X by X—XC, then the condition (i} is clearly
satisfied. The MANOVA and GMANOVA problems are typical
examples which satisfy (i)',

Next, we consider the uniqueness of the aull distribution of 2
test t(X) in Fp. Let y={UeX |t U’'U=1} and X1 =t X X))

Theorexa 9.2 A necessary and sufficient condition for LX) to
the same for all 2(X)eFg is that when £(X)=NWM, I®E),

remain
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the
Qi) L{(X—M)Z-V3}=L{t(X)} for all
(iv) L£{tX)}

following conditions (ii) and (iv) hold:

(M,

26,

the following conditions (Hi)’ and (iv)’ bold:
(i13) uﬁ.ﬁlgletuv"uTN‘u for all (M, 2)=8,x 4,
.,ﬁiﬁ taX)=t{X) for all a=0.

X Ao.

=2it(X/11X11)} for M=0, Z=q"I and ¢*>>0.

Corollary 9.3 The (null) distribution of #(X) is unique in Fg if



Chapter 3

THE GENERAL MANOVA PROBLEM |

1. Problem and Summary

1.1, Problem. The purpose of this chapter is to study the testing
problem in a general MANOVA model or 2 growth. curve model

in a systematic way, which is described in Section 1 of Chapter L

That is, the model considered here is

(L1 Y=X,BX.,+E, E~NQG Ia)

and under this model the following testing problem will be studied;

(1.2) H: X.BX,=X, versus K: LBX =X,

We called this problem the general MANOVA problem and often
abbreviate it as the GMANOVA problem. Our analysis iato the
and only fully inva-
riant tests will be pzid 2 prime attention to. For the general theory
he referred to Lehmann (1959),

Ip association to the necessity

problem is based oa the invariance principle

of invariance, the readers may

Ferguson (1967) and Eaton {1983).

for our analysis, some selective topics of the theory are reviewed

in Chapter 2. Especially, the representation theorem for the proba-

bility ratio of distributions of 2 maximal invariant, which ds due
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An-
which is used in Chapter

(1967),
dersson’s version (1983} is also available,
5.

to Wijsman plays an important role in the znalysis.

1.2, References. In contrast to the usual MANOVA problem (see

Chapter 1), very little work had been done on the GMANOV A

problem using invariance before Kariya(1978). References to work
on this model prior to that of Potthoff and Roy (1964) and Rao
{1965) can be found in Rao (1967) and Gleser and OQlkin (1970}
" and the papers referred to below. Khatri (1966) derived the LRT
© (likelihood ratic test) for the above problem by transforming the

" model and using a conditional argument, and he also proposed some

other related tests based on similarities between this problem and
'the usual MANOVA problem. Using Khatri’s approach, some related
..HwaoEwHﬁm it. the model were studied by Krishnaiah (1966). In
: Gleser and Olkin (1970) reduced the problem to
4 canonical form and using the snvariance principle, dexived the
LRT. Kiefer and Schwartz (1965) briefly treated the problem in a

special case and proposed 2 nonivariant Bayes test. In the same

nother direction,

case Stein (1966) proposed a conditional test based on the principle

of -conditionality. Fujikoshi (1978) proved the unconditional mono-

tonicity of the power functions of the LRT and the tests proposed

dm Khatri (1966). In the paper (1873), he also derived the nonnull
asymptotic distributions of these tests. Bayesian Analyses are made
‘Sﬂ Geisser (1970, 1980), Lee and Geisser (1972, 1975), Fearn
1975).

"Kariya (1978}, using an invariance-sufficiency argument,
hed an essentially complete class theorem for fully invariant tests,
terived the LBI (locally best invariant) test and showed that it is
ommﬁ% minimax. Kariya and Kanazawa (1978) derived the null
distribution of the LBI test for a special case. The admissibility
om tests in the GMANOVA problem is questioned by Marden and

establi-
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Perlman (1980) and Marden (1983), and complete classes are descr-

ibed. In particular, the LRT is shown to be inadmissible

12). In the group of affine transformations, Banken (1983) proved
(3970) and

(see Section

the maximality of the invariant group Gleser and Olkin
Kariya (1978) used to analyze the problem, while Nabeya and
Kariya (1984) showed it in the group of all homeormorphisms.
Turther, Banken (1984) made an extension of the GMANOVA
problem and reduced it to the GMANOVA. problem via invariance-
On the other hand, Hooper {1082, 1983) considered the problem of
simultaneous interval estimation in the GMANOVA model

Tn applications, Ware and Bowden {1977) have applied the model

to a circadian thythm analysis and Zerbe and Jones (1980) to a

time series analysis.

1.8, Summary. In Section 2, a canonical form of the problem
{(1.2) upder the model (L1) is obteined and two groups, say i
and G, leaving the canonical problem. invariant are chosen where
¥ is 2 subgroup of F. Then a test invariant under ¥ is character-
through a maxiral invariant under ¥, which consists of 4
This is because an analytically

ized
rapdom matrices (T, Tn Ts, TS,
tractable maximal jnvariant under ¥ is diffcult to find. In Section

3, we establish the maximality of the group € as a group leaving

the problem invariant.

{n Section 4, by sufficiency approach
of G~invariant tests based on (Ty, T2 alome forms an essentially
complete class among all the B-invariact tests. Under this result,
the conditional problem given T, becomes exactly the same as the
MANOVA problem. Here it is noted that the marginal distribution
of T, does not depend on unkpnown parameters, but T, is a part
ufficient statistic so that T, is an ancillary statistic. Some
prepared and the LRT is derived.

it is shown that the class

of a s
distributional results are

In Section 5, the essentially complete class in Section 4 is again .
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¥

obtained by invariance approach, where Wijsman's theorem for the
representation of the probability ratio of a maximal invariant is
used. This section is also a preparation for Sectioms 6-9. In Section

6, the distributions of maximal invariants are discussed.

In Section 7, the LRT and its related tests are considered. In a

special case the LRT is shown to be UMPI (uniformly most powerful

jnvariant) in the class of conditional ¥-invariant level & tests given
T,, though it is not UMPI in the class of all the F-invariant level

~ «a tests. Some additional properties of the LRT are investigated. In

Section 8, a unique LBI (locally best invariant) test is derived.

Hence it is locally uniformally better than any other F-imvariant

test including the LRT and so it is admissible in the class of -

invariant tests. In Section 9, the LBI test is shown to be locally

minimax. In Section 10, the exact distribution of the LBI test are

* derived for a certain case and the asymptotic null distribution up

“to ! is derived in a general case.
In Section 11, the monotonicity property of the tests are discussed

and in Section 12, the admissibility and the robustness of the tests

are briefly treated.
" Recail that d(x), Fi(#) and J.{p) denote respectively the group

of nxn orthogonal matrices, the group of X2 nonsingular matrices
and the set of pxp positive definite matrices. For A€d.(p), 4**

denotes the symmetric square root of 4, i.e., (Av*7=A unless

‘otherwise stated.

2. A Canonical Form and Invariance

2,

;. We restrict our attention to the class of tests which are invariant

1. Canonical form. To analyze the problem stated in Section

nder a group leaving the problem invariant. As in Gleser and

OF.E (1970}, we reduce the problem to 2 canonical form and
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derive a maximal invariaat under & particular group leaving the
problem invariant. However as Gleser and Olkin pointed out, there
is a bigger group leaving the problem invariant although its maxi-
mal invariant is rather complicated. In Gleser and Olkin (i970),
invariance is utilized only to derive the LRT, so their attention
is restricted to a smaller group under which an ampalytically trac-
table maximal invariant is available. On the other hand, since
our concern is in a possible reduction of the preblem through
jnvariance, our attention is focused on the class of tests invariant
under the bigger group. We shall call the bigger group full group
and a test invariant under the full group a fully invariant test.
However the smaller group is ctilized to describe the class of fully
jnvariant tests since an analytically tractable maximal invariant
upder the full group is not available.

The model under consideration is

2.1 Y :nxp ~ NXBX, LD,

where

HNHwHﬂh;.NU n\\«“_.lTu‘_.\»_
HN.DW ?N.mv ”uv_. ITM?...
n=ny+na+ s

and bm&Lﬁu.

Xt X (4,
X, (P X
p=prtPe TPy

B : (ny+m) X (putahy

And the problem is to test the GMANOVA. hypothesis

(2.2) H,: X.BX.=X, versus H:: LBX.+X,

where

rank(X;) =7,
rank (X)) =2z

X myx (bl
X, (o100 X O

Tor a canonical reduction, we use
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Lemma 2.1. A with rank(A)=m, there

exist matrices ES@lim) and PEC(n) such that A=E(,, 0P

For any mXn matrix

By this lemma we write X, and X; as

X.=P| |E, ; REOH), E,c%lin+n,} end

0
.Nu“.munh 0\F;; mum%wn%u.u_:u.\..nr

P,ed(p).

L

et

{2.3) Y*=PY P, B*=E.BE, 2*=FPQF,.

¢
So H\*)\Hﬁhﬂ wv, LE®H%, where B*: (m+ndX (py+2z). On the
" other hand, for the hypothesis we write X.BX, as

{(2.4) H&ﬁnk@u@%ﬁ&%ﬁuNumﬂw*mmpﬁ.

 And apply the above lemma to X,Er* and E7*X; to get

XES=E, L0 ; BE,€%lm), P,=0(n,+n,) and

0
E X, =P, I E, ; P.el(pi+2a E.c51{2,).

Hence from (2.4), the null hypothesis is equivalent to

= ) °
(2.5) H,: (L, 00 I =E7XET,
: : P2 N
where @=P,B*P, : (n;+ng) X (p,+bah. Let ng=n=(n,+7,) and
Py Pz Pa
. o e 0 ®: 6, @E (1
(2.6) Q= = =0, O On|n
0 0o 0
0 0 0 /n

©,3=0 and B,;=0

where 8=(0,0) [, +n,) xp. Then the hypothesis H, in (2.5) is
equivalent to H, : 8, =Ei" XE

‘Here without loss of generality, we assume X,=0 so that it is
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expressed as Hy @ ©,.=0 Now define Z and Z respectively by

PG
% :
0r

P, O
oI

F )
or

P o
Vi
or

z :mXp, and T=

Then our canonically reduced model is 2 ~ N(B, [DE) or

o P Ps

Zy Zy2 Z 3\ m 6, 6, 0 Z F Fu
2.7 Z=\Zn Zun Zyilne ~ Nl o, @, 0), I®NZy Za 2]

Zy Zy Z g5l 7 0 0 0 Zy Zaz Zas

where Zy; : pixp; and the problem is to test

(2. 8) H,:0,=0 versus FH:0n+0.

This is a canonical form of the problem. Here we may further
reduce the model (2.7) by sufficiency and get
‘NH,_. NHN ..N‘Hu
NNH Nu» Nuu

N o .z‘ﬂmu .N.E}E»@M;

(2.9) V=(Viy)=(Z5Zs) : pXp ~ W,(Z, ns and

7 and ¥ are independent,
where B=(0,0) as in (2.6) and W,(Z,ns) denotes the Wishart

distribution with mean ns¥ and .degrees of freedom m; The

Jensity function with respect to the Lebesgue measure is

P (2,018, D=c| 21 F eur(—5E7(z—0)' (20

h.] m—p=1
|21 F 0 etrl-E ).
Clearly this is an exponential family Lut since we have the extra
snformation @,,=0, ©,=0 on the mean 6 of Z, the sufficient
(Z,V) is not complete for (6,%) or ©,2)
exponential family. In texms of the natural parameters

statistic

a “curved”
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and our model is

the above density can be written as

of the exponential family,
Fio (2 014, 7= B4, p)hlv)expl —trd (&2 +v) +1x2'7],

where 4=3* and =02 It is worth noting that neither the

-information @,;=0, @;=0 on & nor the hypothesis ;=0 is linear

" in the natural parameter (4,7} in the density. This nonlinearity of
~ the model and the hypothesis makes the analysis of the problem
* diffcult. We also note that when p,=p,=0, the problem is nothing
- but the usual MANOVA problem. In this chapter we mainly

concern the case p;+0 where we have the extra information on ©

or (6,%). From the viewpoint of a curved model, the problem of
estimating a GMANOVA model is considered in Kariya (1983).

Before the problem is analyzed, let us make a correspondence

between the canonical variable Z and the original variable Y. Let

. X, and X, be respectively nxn; and p.Xp matrices such that

X, —
rank( _ y=p and XXi=0(.
X,

Crank ([(X, XD =n XIX=0,

‘,P.Hmo let X, and X, be respectively #zX (n:+ns) and {p:+p) Xt

matrices such that

X
rank( _ )=+,

X
rank({ X, X, )=p+p: and XiX,=0.

X, Xi=0,

Then for Pls ard Els in (2.3) we can take

E = (XX, E,=(X, X322

(X X772 X,

P,=[X,(XiX)~2 X (X(X)7*] and Pp=| _ _ =
X, Ay,

-and for By, P, E; and E,,

E=(X%EX)":, E=(XE X))




(XET X)X -
(XE: Xy XLE,
P=[E.X(XEX) ™,

Using these expressions, from (2.3) and (2. 7) Zi's are written in

the original term. In particular,

Nzn:mcﬁelwﬁu-sﬁwoﬁﬁﬁuﬁdﬂé

and

Ps=
(XiET* X)L

= (XX XY XXX
(2.10) N;ug%@-ﬁuéﬁhﬁ-ﬁ%ﬁﬁ@-ﬁ
Zy= %@éﬁwﬁ?@-ﬁ@:ﬁéﬁ-s, and
NauAMMNV-SMQMNAMNMMQ-S
it is noted that X (XX Xi=L—Xl (X)-X] and XUELXDX,
=1~ XHXX) " X _

Now to analyze the problem via

2.9 Reduction via invariance.
invariance, we consider the groups which leave invariant the
problem under the model (2.7). Let
kﬁ.ﬂw ‘bﬂu bﬂu .
2.11) A=1{0 A= Ay |egiip) | AzeFl(p) =12 3}
o O L&wa
P1 Pz Pa
Hﬂﬂ, ¢ 0 7y
ﬁN-HNv F = .ﬁ.wﬂ_u u.wx‘%ﬁ.mﬁuﬂ m‘uﬂ Hﬂu& 0 NMNW m.d.nw
0 0 0/ ns
oo
AN.Hmu P={0 P, 9 mﬁnﬁu:ﬁ.m.@nﬁmzuﬂ@ﬁabXaﬁﬁbXQTSV
0 0P

And consider the group

G=PxAXF=0(nd) % ) X O{nad X AXF ’

-

(2.14)
82

with group operation ﬁuﬁxﬂsmﬂb - H..br..ﬂu =(P,F;, 4,4, P,F A+ F)
..mOH ﬁu—.ukﬁ&m‘mvm% G,”H, Nu “
the left action

glZ)=

Then € leaves the problem invariant by

(2.15) PZA'+F for g=(PAFIESE

In fact, the group acting on the parameter space is £=1% with the

left action

(2.16) §(0,%)=(POA'+F, AZA") for §={P,A,F)=5.

And it is easy to see that the distribution of g(Z) under F(0,Z) is
the same as that of Z under (©.Z) and that G=17 preserves the
hypothesis. Hence the problem is left invariant under §. We shall

call this group the full group. Since it is difficult to find an

" analytically tractable maximal invariant under ¥, we consider a

- smaller group #=0(ns}x A% F, which is isomorphic to the subgroup
(L) % (L} XOlna x AXF of the group % H.Hmﬁow *® Hmmqmm the
=4, FieX=

problem invariant under the action where h=

(2.17) h(Z)=PZA'+F and h(0,3)=(POA'+F, A¥A")

‘where h=h=(Py 4, Fle¥=% with P=DIAG{L,, L., Pj. Here
DIAG{A,B,C} denotes the Eonw diagonal matrix with 4, B and C
‘as diagonal blocks. Note that under the subgroup &(#;) acting on
" Z byZ~PZ, the sufficient statistic (Z,V) in (2.9) is 2 maximal

invariant, This implies a2 maxinal invariant under ¥ is a function

of (Z,V) and that under the full group £, a maximal invariant is

mHmo a function of (Z,V) since F-invariance implies H-invariance.

Hﬁ this sense, the model (2.9) reduced by sufficiency can be

regarded as the model reduced by invariance, namely by the

.,.wﬁoﬁu f{ny). This point will be again referred later. And a

‘maximal invariant under ¥ is given by

Proposition 2.1. (Gleser and Olkin {1970)) A maximal invariant
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under the group ¥ is siZ)=1{8:(2), s:(2)} wheze
.ﬂ\-NN d\.uu —*
s, (Z)= ANSUN.GU A.N.SXNEV..
{(2.18) Viz Vas
Nvu N_.u
sl Z)= = .
N“m Nuu

A proof is given in Apperndix.
We remark that Gleser and Olkin (1970) imposed the conditions

nyt 7S P and m<p, in the statement of the proposition. But

this is unnecessary.

(Gleser and Olkin (1970)) (=) Uner =¥, a

meximal invariant parameter is

Proposition 2.2.

T=0,, .20 where Muu.u"MuulMuame_.Muu.

(b) Under €=%, & maximal invariant parameter is the set of the

ordered characteristic roots of O 0% ; with 5,=ch {0,257 :00)

5=y s By 12820

where ch;(A) demotes the i-th largest characteristic root of A.

From these propositons and from the general theory of invariance,
the power function of an inveriant test under ¥ is a function of
0,5 %.40): and +he power function of an invariant test under ¥ is a
function of & (Lemma 1.2 of Chapter 2).

Next we describe the class of fully invariant tests, that is, tests
invariant nder &. Let D e the class of all invariant tests of
level o under ¥ and let D(¥) be the class of all invariant tests of
level @ under &. Imstead of the form of the maximal invariant
s{Z) derived in Proposition 2.1, we choose amn alternative form

which is in one-to-one correspondence with s(Z). From (2. 18),

52y = A.NS|NS€1.WH.S& mW.uﬁNuulNuuﬂuwu.ﬁw»ua + Z Vel

MP . -

d

—~1/r!
qu ua nu

, where

Z Vi

Z.s Vi

5,(Z)=

7, Vi Zis #0= Vie— Vis Va Ve

A convenient choice of a maximal invariant under ¥ is HZ)=
(£(2Z), 82}, t:(2), t,(2Z)}, where

(2.19) with

T, =4,(2) = xValX' i mxm

(2. 20 x= T+ TV EZ,—Zs Vi Vel

(2.21) T, =6(Z) = Z,VaZh:

My X7y

(2.22) Ty=hlZ) =2, VaZls: nigXn, and

{2.23) T, =t,Z) = Z . VaZh:

72y X 7g.

”.H.Hmna I+ T V2 S bi(n,). With this choice, any F-invariant test is
‘2 measurable function of ¢(Z).

Next, in terms of £(Z} we deseribe the class of F-lnvariant tests.
‘Since J can be regarded as a subgroup of %, DG CD(¥), that

s, any §-invariant test is X-invariant. Consequently a F-invariant

est is a function of the maximal invariant #(Z). Therefore for
any test ¢ in D(F), we can write

{2.24) $Z) = §o(8:(Z), tAZ), E(Z), E.lZ))
¢ some ¢, defined on the space of (T3, T3 T5 Tl

ﬁwSEm 2.3. Suppose a group G satisfies G=HK for two subgroups
K, H of G. Suppose G acts on a set & and let 7: ¥X—F be a

maximal invariant under X where # is the range of r. Suppose

KK is a homomorphism of X onto a group K such that z(k(z))
kr(z) for all REK where % is the homomorphic image of &
hen a function ¢ defized on X is G-invariant if and only if (1)
. is Frinvariant, say 4r(z)="{(z(z)) and (2) T =(t) for all kE

cand all z&.4.
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Proof. Suppose 4 is G-invariant. Then + is H-invariant, so )
={z{x)} for some ¥ defined on . Also pkx) =z z(kz)} =P (& ()
=np{z) ={(z{x)), hence PRty =z for all =S The converse is
clear since for any g=G, g=hk for some heH and k=K and z(gz)

=<({hkx)=T(kz)= Er{z).

.m,u = ‘N.m..ﬁ

Then by using (2.10), we obtain

X XXX, X)X, ]

Lemma 2.3, (1) Ve,=[X{X, X)X ] X{XX NY XX,
X [ XX X)L ]

{2) 25— 2 VEa Ve, =AY Y NY) X[ X,V NY X XA,

3) T=AY{¥Y'NY) )
—¥'NY) X XY NY ) O XY N Y AL
,Hu_..oom. The proof is straightforward, and omitted.

Proposition 2.3, The class of G-invariant tests L(F) can be specified

as the set of all tests ¢ in D(X) such that whenever ¢ is expressed
:n the form of (2.24), ¢, satisfies

AM. va Avoﬁuww‘..mdv Hvynw.ﬂmu manum&.a .mv»?ﬁ& = ..._oeﬁ.t Lo Ts, uL

Proof. Lot H=(L}x{I}xZ={I}x{I}x0l)xAxF, K=0(n) From this lemma, T, = xVihx' is expressed as

% Olna) % (I} % (L} x {0} and F=0F in Lemma 2.3. Then all the
assumptions in the lemma are satisfied. Note

Et(Z) = {Pt.(Z) Pl PLIZ)Pi, PAlZ)Ps Pt (Z) P}

for Mumﬂp .Numaﬁrvxac& mmbomﬂrmnwm&ﬁmoﬁoﬂ?

(2.28) Ti= I+ T AY Y NY) XL G NY ) XX,
X {XLX(Y ' NY ) X X X XY VY ) X
x XX N Y VY AT T

.Hu particular, if X;=1, then T:=0 and
(2. 29) T =AY X[ XI{Y'N;

V)X XY AL

The propositicn also follows from Lemma 1.4 in Chapter 2,

By this proposition, an Z.invariant test is a measurable function
{from the range space T X T X T Ty of T=(T, T2 To T =HZ)
into [0,1], where 7, =F = RuD/A F = R /2 and J,=R""

while a G-invariant test is characterized as an J-invariant test

3. Maximality of the Group.

1. Banken's result. In section 2, the group ¥ in (2.14) has
een called ﬁ.rm full group relative to our problem. In this section,
is terminclogy will be justified based on Banken (1983). That
-it will be shown that the group ¥ is maximal among the affine

E..wwu groups which leave our problem invariant. First it is noted

satisfying (2.25). In addition, in terms of a maximal invariant

parameter 5=0) = {ch;(0,,Z=01)} in Proposition 2.2, the hypo-

thesis in (2. 8) is stated as

(2.26) H,:8, =0 versus Fi:8:> 0,

t any affine linear transformation f(x}=Bx+e¢ from R™ into
R™ is written as

which is the reduced problem via G-invariance. This formulation

is sometimes used without reference. ’ Flx) = PXQAC with B=3. P&,

Finally to make a correspondence between (X, Vazs 1) and ﬁrm
original terms, let N,=I-X,(X{X) X,

.20 A= [KXX)X X (X! and -

some FitnxXn, Q;:pxp and 7, where X and € are nxp
trices with X'=[x;,...,x,] and C'=[e¢y,...,c,], x={x}...,x})" and
H”&::unu\. The next theorem is due to Banken (1983).
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Theorem 3.1. (Banken {i983)} Suppose X axp~Ny, LRI with
pER? and TEL{P). Then the maximal group of affine linear

iransformations which leaves the model invariant is X =0(n}x

GLpY X R™,

Gl(p), E,y=0 and FE,;;=0 implies the nonsingularity of H=(E;)
(£,7=1,2). And under E;;=0 and E,;,=0 the remaining mmdmmohﬁm
are (a) with {=2 and {(¢) with j=1,2, Next, setting ©,,=0, from ,
(¢} with 7=1,2, we obtain Pu(@,, €..)H=0 for any &, and @,. ,
Hence Py,=0 follows from |H| 0. Further, setting @;=0 and @,
=0, from (¢} with 7=1,2 we obtain Pyu0,,(E,£;2)=0 for any Oy,
Since (E,,Eq) 1s of full rank by |H{+0, Py,=0 follows. Since P
E0(n), Py=0 and Py;=0 implies Q@=(F;;) (,7=1,2)€0(n,+2,} and
50 Pj;=0 and P,;=0. Now the remaining equation is only (a) with

: 7=2in (3.1). There setting ©,,=0,
(3-2) Pu(0;,0,)K =0 for any &y and Oy,

Now we shall show the maximality of our group. The following

result is due to Banken (1983) but the proof is different.

Theorem 3.2. When Z :2X w)\zaﬁ I®E) with O in (2.6) as in
{2.7), the maximal affine linear group that leaves the problem
(2.8) invariant is G=PxAXF in (2.14).

Proof. Let f(Z)=3j.PZQ;+C be an affine transformation. For
f to preserve the covariance structure of the form IRZ, it follows
from the proof of Theorem 3.1 that B = I.P&&;= PRA for
some Pe6{z) and Acsgl(p) so that flZ)=PZA'+C.

Now for this f to preserve the mean structure of © and the
hypothesis €,,=0, PBA'+CESH for any 0 of the form (2.6) with

©,,==0, where F is given in (2.12). From the case =0, CE¥F

where K=[Fi, Exl : (p1+22) X P, Since K is of full rank, for
some F,&0(p:+p:) and F.elipd, K=F{§|F. Hence (3.4) be-
_noBmm P, ®»L.5_Hmﬂu_ﬁo for any @, and @, from which P,=0
can be concluded. This implies Pn=0 and so P=DIAG{P,, P
Py}, Finally from the remaining equation ~ut®th.5”o‘ mnn.ﬂ
mn.mnp Puedn), E,=0 follows. Therefore E={E;;) is block lower
ﬁwmbm&mn so that E'=Acs, completing the proof.

follows.

To show PP and ASd, write P={P;) with Py nXn; and
A'=E=(E,) with E;: p:Xp; and let (POE);; : n;xp; denote the
(z,7) block matrix of POGE. From (POE},: =0 {(£=2,3), (POE) ;=0
and (POE);=0 {i=1,2,3}

nm.v .~uﬁ®tmﬁ + .ﬁ:@&.@i + muumwﬁmum =9 T..HP wv

Corollary 3.1. In the MANOVA problem, the group O(n) X @{xn,)

,ﬁ?&x%zﬁuvxméu is the maximal affine linear group that leaves
he problem invariant.

roof. This follows from the fact that the MANOVA with p,=

Am. Hv Quu HU#@E@S -+ wuﬁ@ﬁhq\.; + Wu»@un\m& =90
{c) .TSQE.NC + H.uuw@u?@.c. + Hvanmwu»mu‘.. =0 (=L2 3)

Here set ©,=0 and @,,=0 to get ELO(Ph, P, Pu =0 g&ﬁﬁﬁﬁm. :
this by (Ph, Pk, P4’ from the right and using 3, PuPy=1 produces

ELOL=0 for any @y, implying E.;=0. Similarly setting €10 and
©,,=0 and using the same argument, we obtain K,;=0. Since Ec
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Proof. A subgroup Olng in P=0{n X O(n5) X Olna) the
model (2.7) to the sufficiently reduced model (2. g} in which Z
and V are independent and (£, V} is suficient. Hence by Theorem
2 2 in Chapter 2 and the argument thereafter, the group E=0(n,)

% Og) X Gl(p) X R s maximal in the group of all homeomor-

reduces

phisms, say X, as a subgroup leaving the model (2.9) invariant.
Therefore it follows from Theorem 3. 2 that §%=0(m;) X Olng) X AX ¥
is maximal in & a5 a subgroup leaving the problem (2. 8) invariant.
Sipce Lemma 1.4 in Chapter 2 justifies the mmamd&mm reduction of
the model (2.7) to (2.9) by Olma), G=G* X O(n) 1is maximal in
X as a subgroup leaving the problem invariant. This completes

the proof.

4 Essentially Complete Classes Via Sufficiency.

4.1. Essentially complete classes. In section 2, it was shown that

a maximal invariant under # comsists of 4 statistics Tii=1, -, 4),
where T=(T., Ty Ts, T} is given in (2.19)-(2.23), and that a §—
invariant test is characterized as an F—ipvariant test satisfying
(P, TP}, P TPz P, TP}, P, TPy =¢ Ty, T Ts, 7). In this section,
we shall show that for any G-invariant test 4 of level o based om.
T there exists a F-invariant level « test & of based on (T4, T2)
only such that the power of ¢ is the same as that of 4 In other
words, the class of -invariant tests of level o based om {T%, T:)
only is shown to be an essentially complete class in the class of
all G-invariant tests of level & D(%). This implies that without
loss of generality, {Ts, Ti} can be discarded from our consideration.
We establish the result by a sufficiency approach and by an
invariance approach. Let G{¥} and G(%) be respectively the class
of F~invariant tests of level o based on (T, T2) only and the class
of G-invariant tests of level « based on (7%, T%) only. -

90

Theorem 4.1. (1) G(¥*)
(2) G{% forms an essentially complete class in D{%).
(3) Under H,:6,,=0, T} and T; are independexnt.

forms an essentially complete class in ().

To prove Theorem 4.1, the distributional properties of the statistics
T, (i=1,--,4) in (2.19)-(2.23) are examined.

Definition 4.1. Let I, I5; and I be random matrices. Then Ui

and ¥/, aze said to be conditionally independent given U, it

P(UEA, U4, ) =TE P U A U3,

for Borel sets As on the spaces of Uls (i=1, 2}, where P(-{Ui)’s

are versions of conditional distributions given Us.

Lemma 41. (1) Given {(Zya, Vaa), X~ NI+ 1270,z IRE 0.
Hexnce the conditional distribution of x given (Z1s Vi) depends
on (Z, Va) only through Ti

,ﬁwv Vs~ Wiy( oz, na—ps), and Vs is independent of (x, TG
- T T

" (3) Given (Z4 Faly T and (T5, T are conditionally independent.
(4) The joint distribution of (T4 T,, T) does mot depend on the

maximal invariant parameter @270

Proof. First note
(@) Zy; given Zyz~ N@,+Z,23%;, L, @255

(b) Zis ~ NI, L,,®Z3)

() ViV, given Vi ~ NVR E5Zn, @220
(&) Vas ~ WpolZss 723
(e) V. is independent of (Ve V).

and .ﬁ\uu.u -~ %unMun..f Bﬁlﬂuu

”.‘H,Wnammonm it follows that
ﬁ@ WOH mwﬂnﬂ ANHG- .ﬁ\.n.uv. Nuuy .—.\.m.uw\u.ﬂ\un m.Hpm, ququNW are Bﬁﬂd.m.ww%
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conditiopally independent,
ig) Z,; and Vg are independent, and
(b} Vs is independent of all other statistics.
Consequently (1) follows from (a) and (c), (2) follows from (h),
(3) follows from (a) and the definition of conditional independence,

and (4) follows from the forms of T7s, for example, write T as
o= Z SR ERV o B8 25 L .
This completes the proof.

Using (1} in Lemma 4.1, Theorem 4.1 (3) follows, while
Theorem 4.1 (1) follows from

Lemma 4.2. The statistic [T, Ty} is sufficient for the distributions
of T.

Proof. First it is shown that % and (T T are conditionally
independent given T, From (2) in Lemma 4.2, it suffices to show
that x and (T, T are conditionally independent given T.. This
follows easily from (1) and (3) in Lemma 4.1, Second using the
conditional independence of T} and (Ts, T given Ty the, condi-
tional distribution of (T T given (T,, T, is the same as that of
(T, T given T, In fact let ACT,,BCT, and CCTyxT, be
measurable sets and let Ir denote +he indicator function of a set

F. Then

[ canirenP(Ty TVECI Ty THP

= '“,n_.ﬂ.mﬁj_u.umwu Ic(Ts, T)dFP

il

[ craomIaT Io(Ts, TP

= [renP(T:E 4, (T, TIEC| TP

. Lemma 4.3. (Hall, Wiisman and Ghosh (1965)) Suppose (i) for

[ criemP(T,€ AI T P{(Ts, TOSCI TP
(from (1) in Lemma 4.1.)
= [eren A TIPUTs, TIECI TP
(from the definition of conditional expectation)
= [ esntrenP((To TIEC| TP
Therefore P((Ty, TH&C| Ty, T =P{(To, T)EC| Ty a.e. (Ty, Ta).

Fipaily, since the conditional distribution of (T4 T) given T, is

paramenteriree by (4) in Lemma 4.1, the result follows.

Now we shall prove Theorem 4.1 (2). First we state 2 theorem
due to Hall, Wijsman and Ghosh {1965). Let (X, 4, F) where PP

be a probability space and let G be a group of measurable bijective

transformations of & such that for each ¢€G, gA=4A and gPeP,
where gP{A)=PlgHA)) for AEA. Let dA={AcA|gA=A4 for all
gEF} be the invariant sub-sigma-field of « and let 45 be the

sufficient sub-sigma-field of 4. An #-measurable function fissaid

* to be almost invariant if for each g&G, flgai=flz) a.e (P).

each g€G, gds=ss and (ii) if a function fis As—measurable and

almost invariant, there exists a AsN s ~measurable function F such

“ that f=F a.e. (P). Then Ay =ssNsd; is a sufficient sigma-field of

I.

We apply this to our problem. Take the Borel field of the space

T KT X Tex T, of T for A in Lemma 4.3, teke the Borel field of
‘the space T, %7, of (Ti, T) for s above since (T, T.) is sufficient,
.and take Oln,)XO(ny) for G. The action of G on T is (P, T.P1,
: P.T.P, P.T.Pi, PT P} for (P, P)eG. Then the condition (1)

“follows. The condition (ii) follows from Lemma 6.1 in Chapter 2
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(Lehmann (1959) Chapter 6 Theorem 4). Another proof is given
in Appendix.
4.2, The conditional MANOVA problem and the LRT. From

Theorem 4.1 anéd Lemma 4.1, our problem is now reduced to the

following; in the model

(4.1) x given T, ~ NI+ o) 76, IRZ:.s),
Vigs ~ Wp(Fazs 7a— Pa)s T.=Z;:VaZs with
Zy3 ~ N(0, HE@M«& and Va \(ﬂ\wuﬁ.m.uu, 7ia)s and

(x, T2 and Vs are independent

our problem is to test 0,,=
problem given T is exactly the same as the MANOVA problem.

And so all the results in the MANOVA problem are effective in
this conditional problem. In addition even if we take (T, T inte
account, the joint density of {x, Vazay T Ty T} 1s by Lemma 4.1
given by

4.2) Alxl AH‘,TH.LJ.G@:_ 24 N:\.ﬁ.u_M»P&&H&ﬁﬁb&.ﬁqrﬁh:

where f, and f; are respectively the densities of x and Vs with
respect to the Lebesgue measure dx and dVis in (4.1) and
PT=TsT4 is the joint distribution of (Ta, T T4)- Since PE=TaTs does

pot depend on unknown parameters, the LRT (likelihood ratio test)

for testing ©@,=0 versus 0,50 is given by

%o sane ol T T~ 015, Zazs)fol Vera| Zass)
IDAX T2z, unHGn_ 0, Muu.ufﬁn:\nu.u | Zaaa)

This implies that the LRT in the conditional MANOVA problem -
s equal to the LRT in the GMANOVA problem. Therefore the

LRT in the GMANOVA problem is given by
(4.3 [ I+T] >e¢

(see e.g..

94

invariant tests based on (T3, T, only forms an essentailly complete

—0 versus &;+0. Hence the conditional

invariant under ¥ depends on Z only through

. Then the marginal density of Z, in (5.1) becomes

Anderson (1958)). In Chapter 7, the LRT and its related -

tests are considered.

5. Essentially Complete Class Via Invariance.

5.1 Reduced problem. In this section, we take an invariance

approach to the proof of Theorem 4.1 (2 : The class 8(F) of G-

class in the class D(8) of all $-invariant tests based on T=(T},
T., T, Tl

The approach here is taken in a wider framework by Kariya and
Sinha (1983) and is based on the representation theorem on the
ratio of distributions of a maximal invariant due to Wijsman (1967)

(see Section 3 of Chapter 2). From Proposition 2,1, a maximal

(5.1) Z,=(0, U, Us) =((Z10 Z1s), Z 3, (Z 500 Z 33))
and a maximal invariant parameter under % depends on {@,2) only
through £§ =0:,5540:=Y with £=0,,Z&%. Hence the power fune-
tion of a E-invariant test depends on (@, %) only through § (in
fact, by Proposition 2.2 it depends on (B, Z) only through the
characteristic roots of ££), and so without loss of generality, we

-can set

ﬁm. Nv mwﬁ”Ou 8,,=0, ©,,=0, X=I and ®...u”m.

(5.9) FIZ18) = c expl—5tx (=8 (=8
e U e G UG

where E*=(£ 0 : 7,X (p.+ps). Under this density, the group ¥

acting on the left of Z is also reduced to the subgroup F=0(m) X
({mg) X Olng) X A, acting on the left of Z, by

(5.4 6Z, = gll, Uy, Up) = (PULB!, P24k, PUBY




wheze g= (P, Py, Ps, Bl %, and
22 .xﬁ.NuV P
= = _kﬂ:m%.:mw-v" @INuww.
G5  A=1(B Ao v

Therefore, from the viewpoint of invariance, our problem is to test

(5.6) H,: =0 versus F:§+0

under the density (5.8) of &, in (5.1) with group %o acting on the
left of Z, by (5.4). To be precise, we have to apply a stepwise
snvariance reduction; first reduce the original problem by the group
A% F where F is defined by (2.12) and A= H%m.&_h:m%:%b. A
=0, Ap=I, An=I} with A in (2.11), and then the second reduction
is made by the group Yo This stepwise reduction is justified by

Lemma 1.4 in Chapter 2, as is the case of Proposition 2. 3.

5.2, Probability ratio of & maximal invariant. To apply to the

reduced problem {5.6) Wijsman's theorem on the ratio of distri-
butions of 2 maximal invariant (see in Section 3 of Chapter 2), let
K=K(Z be a maximal invariant under ¥, acting on the left of

Z, by (5.4) and let P¥ denote the distribution of K under &
Further define

(5.7 xlg) = VBB 0] A Bl = | sl 4770 7] A A1

(5.8) poldB) = (| gy Ale] ~@+#97°d Agg) (| Ass A| ™ *d Acsld Aza

(5.9 WldB) = x(@)aldB), M=nytmo—ps and

(5.10) HZ8 = | poflgZ,|£)u(dP)pldB)
where g=(Py, Pz, Poy BIEG, vﬁ&wvHu»ﬁ.ﬁb&ﬂhﬂ:&&ﬁb with P=
(P,, P,y P5) and s are the invariant probability measuxes over O(:)'s
(=1,2,3).

Lemma 5.5. The Radon-Nikodym derivative of P¥ with respect

o6

to P¥ at K=K(Z,) is given by

(5.11) R, = (dPY/dPY)(K(Z,)) = HIZ,|£/H(Z,|0)

Proof. Wijsman's theorsm requires to show that the space of Z,
is & Cartan G,space. To show this, by Lemma 3.2 in Chapter 2,
it suffices to show that the space of U, say %, in (5.1) is a

Cartan A,~space under transformation Uy—T,B'. Here we regard
the space %, as the set of ;X (p,+ps) matrices of rank pz4-£s
(because of 7s=p) by eliminating a set of Lebesgue measure zero.
Then U;B'=U, with U;E%, implies B=J, That is, no element B
in o, except B=I leaves U} fixed. Therefore by Lemma 3.3 in

Chapter 2, %, is 2 Cartan A;—space. Hence Wijsmans theorem is

now applicable to our problem in (5,6) under the demsity (5. 3.

Also based on its definition, the space of Z, can be shown to be a
Cartan F,space. Next, we can identify x(g) in (5.7) with the
inverse of the Jacobian of the transformation (5.4) and p,(dB)

in (5.8) with a left invariant measure on +, in (5.5), Therefore,
Wijsman's theorem states that the probability ratic {(dPE/dPE)
(K(Z,)) is given by (5.11). This completes the proof.

1t is noted that the left invariant measure (5.8) on A, is mot

equal to a right invariant measure on A, By this reasom, the left
action of &, on the space of Z, in (5.4) must be distinguished from
the right action: §(Z,) =(PiU,B, PilLAs:, PiUB).

We shall evaluate (5.11). Let C=(C;)EX, be 2 matrix such that
(5.12) CINO+ Us UC! = Ly

and define

- (5.13)
(5.14)

n.ﬁ.\.»u .:Nuw = Hh.n: - ﬁNﬂNn_mulTNuuomuu Nuuﬁww& and
4 = trEf = tr0:,53:00

‘Lemma 5.2. The ratio B in (5.11) is evaluated as



(5.15) R u?a;%émlwaww+ﬁ5§?+ W3 Az)

—L41udBI(dP) / T%T.,wqmwg W(dB)
Proof. Write (5.10) with (5.3) as

(6.16) HZol8) = 0 | guexpl—piz(P.UB — £ (PUB — )
!wq?wwxamwnlwﬁ& UiUB 1uldB)v(dP)

Here transforming B into BC with C satisfying (5.12), the inside
of [ ]in (5.16) becomes

IWM._HW.W‘ — 2trf P WoAL+ WoAs) + ﬁﬂ.%uuﬁmuNwN,qumfhw + 4]

Further, transforming A into AT+ C 32502 i Cla) ™ yields the
inside of [ ] in the integrand of the pumerator in (5.15), while
under £=0, it gives the inside of [ ]im the denominator. Some
multiplicative constants coming out by these transformations are
cancelled out between the numerator and the denominator. In

addition, using »;(6(nd)=1 for i=2,3 vields the result

5.3 Essentially complete class. Since R,=(dP¥/dPE)(K(Z,)) is the
density of K=K(Z,) with respect to PE, since C in (5.12) does
pot depend on Zj so that R in (5.15) does mot depend on Zg
and since P¥ is independent of the parameter £ by (5.3), (Th, Us=
((Z 130 Zrs)y (Zazs Z o)) is sufficient for the family {dPF=RdP¥IfE
R™M¥s}, H.Wofmﬁ we used the parametrization £=0,I3¢, PFin fact
depends on £ only ﬂramﬁmr the characteristic roots of £¢. We

summarize this fact as

Theorem 5.1. Let (U, Un)={((Z1s Zs), (o Zna)). Then (1) a
maximal invariant (T, T2) under #,=x, acting on the left of (T7,
U by (U, U)— (LB, U:B) for BeX,=A, is sufficient for the
distributions of (T4, Ts T T4). oo
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(2) A maximal invariant under F.=0(m)X0(n;) X, acting on
the left of {U,, U3 by (U, U)—~(P.ULE, B URB’) for (P, P, BIES,
is sufficient for the distributions of a maximal invariant under §
acting on the left of Z as in (2.15).

Proof.  (2) is clear by the above argument, while the above proof
for R, is effective for the group #,=, without the subgroup
() X Oz2q) X Clzzs).

This theorem implies that the class 6(F) of F-invariant test

based on (T,, T:) forms an essentially complete class in the class

' D(F) of F-invariant tests based on (T;, Ty, Tsy T.). Because (T4, T3)

is a maximal invariant urder the subgroup X,=4, of ¥: as in

- Theorem 5.1 (1).

Based on this theorem, our criginal problem may be restated from

the viewpoint of invariance as follows: with (%, Uh) test H,: £=0

: versus H, 1 £50 under the density

(5.17) AT, |8 = expl—tr (Ui~ 69/ (Ui $4—J = UL T3]

. where the group §,=0{m) % ¢{n)) X A, acts on the left of (T4, T7) by
(Th, Us) — (P,UB', P,U,B"} for (P, P;, B)E%,. Or the problem may
‘be also stated as follows: test H, : 3;=0 versus H; : §,>0 under the

density of a maximal invariant ander &, where &; is the i—th

" Jargest characteristic root of ££'=0,,85405. Let J=J(U,, Ui} be 2

maximal invariant under &, and let P{ be the distribution of J

under & Then in the same way as zbove, we obtain

Lemma 5.3. (dPY/dPY{J(Th, Us))=R, where R, is given by (5.15).

" In Marden (1983}, the GMANOVA model is regarded as U ~

N{g*, L.RE¥ and U, ~ N0, I,,&2Z% from an invariance point of
view, where E*=(Z;) {i,j=2,3}.
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6. Distribautions of Maximal Invariants.

6.1 Distributions of maximal invariants As has been stated, a
usual invariance approach to a testing problem is to first find a
group leaving the problem invariant, then find a maximal inva-
riant, third derive the distribution of the maximal invariant, fourth
derive an optimal test based on the distribution and finally consider
the null distribution of the test statistic. In addition, the nonnull
distribution is often considered to investigate the behavior of the
power function. In our case, a maximal wgﬂmumm.a under & is char-
acterized through a maximal invariant under #. However, without
+his characterization, it could be handled through an application of
Wijsman's theorem in the same way as in Section 5, though we
have not taken this approach. In Section §, we observed that a
maximal invariant under the group G =00m)x0(ns) X A, with A,
in (5.5) which acts on the left of (U, U)=UZ 0 Z .9, & e Z ) by
(U, U — (PGB, BB for g=(P, P,B)EE, is sufficient for the
distributions of a maximal invariant under ¥ acting on the left
of Z in (2.15). In this section, we consider some distributional
aspects of a maximal invariant under ¥ acting on (U, Uh)-

Let J=J(U,, U;) be a maximal invariant under &, and let P{ be
the distribution of J under £#=0,3z%. Then by Lemma 5.3, (dP¥/
AP, U)=R, with R, in (5.15). Therefore, once the null
distribution dPY of J is obtained, the nonnull distribution dP% of
J is obtained as dPI=R,dP{. In addition, in deriving an optimal
test based on dP%, it is not necessary to derive the null distribution
dP3, because R, isthe density of J with respect to dP{ being free
from ¢ From this viewpoint, what is required is to evaluate R,
in (5.15). Though we do not do this completely, we here slightly
modify it for a future use. Let D= | %%T,wqu%a@ and
let
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Q(B) = Wodia+ Wy,

(6.1) 1
(B} = exp _Hllw..ﬂ.mmm_\U

* where (W, W,) is defined in (5.13). Then R, in (5.15) is eval-

uvated as

6.2) Re=expl—5a [ [ expitrt'PQUB)»EP)ABIHAE)

Here usually exp(tr£’P.Q(B)} is expanded as F[tr&PQ(B)1/7! and
the integration of each term over ((m) X, is evaluated formally

by using Zonal polynomials or matrix-variate hypergeometric

functions. As a special case, when n,=1,

J o expitcE PQUBI(P)

= [exp{Q(B)E') + exp(—QIB)E)]/2
= LQBE T/ 2.

I

Integrating this over &, term by term, we can identify R:
with the ratio Flt M/ Fl2]0), where fi(tl) is the deansity of

nonnormalized noncentral F-distribution with d.f. p; and n3—p.—

P41 and noncentrality A=v/2(1+1s), and y=§# : 1x1. However,
this fact is easily obtained by wusing the distributional results in
Temma 4. 1. In fact, (ny—po~ps+1)T:/P: given T,=t;is distributed
as noncentral F distribution with d.f. p, and zz—p—p;+1 and

noncentrality parameter A as is in the case of Hotelling T*-statistic.
Note that T,=xVzx' where x~N{(1+&)"V*@;;, Zyns) and Vopg ~
ﬁ\w_LMuu.u_ 7y—Ps).

When 7,>>p, 7T. cannot have a density with respect to the

Lebesgue measure on the coordinate space T, of Ti. Even in this

case, R, in (6.1) is the density of a maximel invariant J=J(U,, T
under &, with respect to P{.




6.2. Case m<p. A book by Johnson and Kotz (1972) serves as (see, e.g. James {1964)),

a general relerence here. 6.7

A=(I+8)"2Y (I+t)"V2, and T=0,,2500

This distribution with density (6.86) is called noncentral multivariate

et b
Definition 6.1. A central multivariate Beta distribution mahW“ Mv
is defined to be the distribution with density . F-distribution. Hence when #2,< min(p, ps), the joint density of

(T, T, is given by

(6.3 fi)= Gol £ @m0 2| [—¢| G TH, teb(m), I—t=deim)

Sl ) = filf (22 1) folta)

where minla, b)=m, a,b integers and

6.6 comTar(EtE5E3) femevrmr (S (5)

where f2(f) is the density of F, (a3 mtns—pa)-

These results are well known and found, e.g., in James (1964},
Olkin and Rubin (1964) and Johnson and Kotz (1972).

Tt is noted that when m,<min {#s, P, the density of a maximal
invariant under the tramsformation (T4, T—(P.T.Pi, P,T.P) (PE
Olny) is given by

Definition 6.2. A multivariate Fudistribution F,(2a, 28) is defined
to be the distribution with density

(6.5) Fif) = co|t|a N [ THE[ 76, 2D (m)

94 and 2b are integers and a, b>(m—1)/2.
where 2a a 6.8 [ ot FPEPL PEPUTINGR)

Lemma 6.1. (1) When T~ F.{a, 9b), (I+T-Y™* ~ Bala, b) and
I+~ Be,.{b, a).

{2) When U: m X p~N0,LRE) and S~ W,(E,n) with azpzm
are independent, then T'= S~ U~ Folp, mtn—2p)

where p, is the invariant probability measure (see e.g., James(1964),
and see also Chapter 2). Of course, (6.8) is equivalent to R,dPy
~with Ry in (8. 2) provided m;<min (pg, Ps).

. () Mitza (1970)) When U~Ben(%, WV o' Ua/a'a

= .Wu“ where a=R™ and a=0.

@) When U~Be,(, §), BU)=(a/la+b)L

Theorem 6.1. (1) When m<f» P and 7=p, under the null
hypothesis @;=0, Ty and T, are independently distributed as

Ty ~ Fults 7+ 7s— D23 and T; ~ Fulpw A+ N3 Do)

(%) When m <p, the nonnull conditional density of T given T= . roof. (1) See Mitra (1870). (2) Since the distribution of Uis
t, is given by :

6.6  Allt: T) = cita] G gy | marmma

s—Pa . L1 ~-1)-
xcxp(—prd) (2R s B s I ) The Likelihood Ratio Test (LRT) And the Related Tests.

—Z 2

LRT. In our problem Khatri (1966) derived the LRT through
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On the other hand,
the

gave a derivation in 4.2,

a conditional augument in the original model.

by using invariance, Gleser and Olkin (1970) derived it in

canopical model in Section 2. We also

Here we study the LRT with the related tests proposed by Khatri

(1966) for some special cases.

It is recalled that a reduced version of our model is given by

x given Ty ~ NI+ T 20y, I.®Z a0
Vizs ~ muﬁMg.e mulmv&

H—N“Nﬁud\.@l&uNm« with
.NZ\(ZAO”HE@MQ and Va~ ﬂ\»LMau.unwv

(7.1)

where (%, T and V. are ;ndependent. In this model, the problem

is to test H, : G.=0 Then as has been seen in 4.2 or from Gleser

and Olkin (1970), the LRT is given by

| Vazal —

Hat _wuﬁ.unTHJL -

1 _ 1
a.s TEevEsT T AT <

Hence in our terms, the LRT is a S-invariant test based on Ti
alone since the cut-off point ki is independent of T
question whether the class of F-

(see below).

From this fact we may pose 2
s based on T) alone forms an essentially complete

be shown. Then one may

invariant test
class. The answer is negative as will
ask whether the LRT is admissible in 6{F) the class of G-invariant
level o tests based on (T%, T The question on the admissibility of
the LRT will be negatively answered in Section 11, However the
similarity of our problem to
us conclude, without proof, that the LRT is conditionally admissible
=£, in the class of conditional level & tests {see Schwartz
problem is exactly the same as

given T:
(1967)). In fact, given T,=1,, our
the MANOVA. problem and the LRT in (7.2) is exactly the same
2s the LRT in the conditional MANOVA. problem (see 4. 2). Based
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the usual MANOVA problem makes .

on the analogy, Khatri (1966) proposed the following tests as in
the MANQVA problem:

Rov's maximal root test: X,

(7.3 Ayt ehy(T) = chafx Vahx') > ki,

Lawley-Hotelling’s trace test: K.

(7.4) HoiteTy = trx V' > kg

Pillai’s trace test: X s

(7.5) Ky tr I T0 = trx(x’x+ Vo) 2% > ks

From Theorem 4.1 (3), under H: @.,=0, T, and T, are independ-
ent and so the critical points k&'s (i=1,...,4} can be determined

independently of T, Therefore these are unconditional F-invariant

tests based on T, only. To investigate some properties of these

tests, we define

6.9}

i

(7.8) {66 (%) ¢ is a test based on T alone}

6:(9) = {$€6(F) | EL (T, To) | To]<a ae (Thl},

[ -|7.] denotes the conditional expectation of - given T

Bo(§) CE.{E) CB(H)-

The null distributions of the tests X's do not depend on T;

and they are the same as those of the corresponding tests in the

EPZOANP problem. Hence the tables for percentage points or the
.m.mw.E.wSmo null distibutions in the MANOVA. problem can be util-

ized for the determination of ks or the significance probabilities.

c9,  UMP property. When my=1, the LRT is shown to be UMP
n 6,(%). When »,=1, all the four tests % 'y’s are identical. Let
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axu.lﬁul.%u..*:bnﬂ\uvu and W;= ﬁ3m|.~vu+bm..u\.ﬁe

and let Alwymwa|y) be the density of (W, W) where v=01,82:0%* .
1x1. Then by Theorem 6.1, h is expressed as

(7.8) W,

(7.9) mnﬁ.ﬂhrgnﬁi = rpﬁew_v&wu?eb with ?HQ\NAH..T.HHY

where the conditional density hilws|n) of W, given W, is the
density of nomecentral F-distribution with d.f. (degrees of freedom)
P, and my—pe—patl and noncentrality &, and Rg(w;) is the density
of F-distribution with d.f. £ and ma—ps+1. Since Ryfwnl|d) has a
monotone likelihood ratie (MLR) property in A, hence in ¥ for given

£, of W, for testing y=0 vs >0, a test ¢ with the critical region

{7.10) wy, > clty) or H> elts)

is UMP(uniformly most powerful) (Lehmann (1959) Chbapter 3).
and T under H;: 0.=0, the
cut-off point ¢lts) in (7. 10) can be determined freely from t; and

But from the independence of T,

test ¢ with critical region (7. 10) with c(ts)==¢c is the LRT. Further,
since the conditional power function (g, M|ta) =Ef¢|T.=tz] 1is
strictly increasing in n=7/2(1+t;) for eacht, by the MLR property
and since the distribution of W, or T, gives a positive measure to
any nonempty open set, the power function i, 7} is strictly
increasing in 7. Hence we obtain a generalized version of Hotelling’s

T-problem.

Theorer 7.J. When n,=1, the LRT X (=X =X =X is UMPIL
(UMP invariant) in 6.(%) and the power function is strictly in-
creasing in 7. In particular, X' is UMPT in 6,(8).

This result is also proved in Giri (1962).

It should be noted that, sicce the proof is based on a conditional
argument, the class for which the UUMPI property holds is not (%)
but 6.(8) in (5.6). In the class 6(9), no UMPI test exists -even
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In fact, by Neyman-Pearson Lemma,
a MP test in G{%)

when m,=1.

Y=

testing v=0 versus

is given by

hlzwy,ws| Vol /R, ws| 0) > ¢.

This unconditional critical region is expressed as

(7.11)

378 () oo ey >

for certain 5;>0 and the critical region im (7.11) depends on e
Hence this MP test is different from the LRT and it dominates i
power at ¥=% the LRT that is UMPI in &,(%). Therefore the LRT
is not UMPI in 6(%) and no UMPI test exists in G{F).

7.3, Distribution of the LRT. As has been remarked, our com-
ditional problem is nothing but the MANOVA problem. Hence
using a distributional result in the MANOVA problem, we obtain

without any condition on 7

Proposition 7.1. Under the aull hypothesis ©;,,=0, the LRT sta-
Histic [ in (7.2) has the same distribution as i=]T%L;, where Ly~
Bellng—p,—ps+1)/2, $,/2) and Li's are independent. Further,
{0)=1, the LRT

m. T, where L;s are

under the alternative hypothesis 0,40 with rank

-

statistic [ has the same distribution as I=
independent, L~Bellna—pa—bs+i)/2, D2/2) (i=1, ..., —1), La, given
To=t~Belin,—pr—Ps+n/2, £2/2 * ME, 7)), moncentral beta with
goncentral parameter Mi¥ )= to{ T+ (I+4:) 7%, and MT )~
Y Belln, +ns—pa) /2, £3/2) with '=6,,75400.

Proof. For the nuil case and the conditional part in the nonnull
case, we can refer to Anderson (1958) or Eaton (1982). To show
the last part, write MITL T =8 I+T)78 with Y=88" and B:n;
%1 since rank(@g=1. Then from Lemma 6.1 and Theorem 6.1,
. Q.THEJ)\mmﬁﬁsp._.aui?u\m, $,/2). Hence applying Lemma 6.2
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yields the result.

Proposition 7.2. Assume rank (@)=1. Then the distribution of
the LRT statistic [ has a strict monotone likelihood ratio (MLR)

property in—tr?” and so the power function is strictly increasing in
el

Proof. Given f, the distribution of ! has 2 strict MLR property
in—Mt,T) (see Das Gupta and Perlman (1972)). Let 2({I\) be the
density of I given A=\, ) and let g(x|tr?) be the density of A
Then the density of [ is given by

Al = bﬁw Mg TN

Since g{r|trY) is strictly totally positive of order 2 as a function,
of A and tr¥ (see Lehmann (1959)), Fl|tz¥) has a strict MLR
property in—tr¥. The second part follows from the first part (see
Lehmann (1959)), completing the proof.

In the original term, T is given by (2.29). The asymptotic null
distributions of the tests #~%, are given in Section 10 and some
other properties of these tests are considered in Sections 11 and 12
where the inadmissibility of the tests is shown based on Marden
{1983).

7.4 Some other tests. When the admissibility of tests in the
GMANOVA problem is guestioned, Marden (1983) included the
following invariant tests in his consideration; .

L ch(To) > i) trlo > ¢

i) =TI+ To > and iv) [J+To] >¢
where

n“NN .qu.vm —
ANFM“NH&..
Voo Va/ . -

T, = ﬁNHEN‘nL

{0,2,0,5)=0 versus {0:,0,:) &

0. without assuming ©,,=0 and they are F-invariant. He also

These tests are appropriate for testing

considered some other tests which are not $-invariant. The genera-

lized Bayes test based on

I+ T s | T+ T >

is also considered and expected to be close in power to the LRT.

7.5. The case Xo=1I It is often the case that a model we con-
sider in applications is not a GMANOVA model but a MANOVA

model;

(7.12) Y=X,B+E E~NQO I®2
while a hypothesis is formulated as a GMANOVA. hypothesis:
(7.13) X,BX, = X,

where the notation is the same as before. Then in terms of the

cancnical form, the model is expressed as

Ly Zy & Oy
{7.14) Z=\Zy Zy| ~ N{Oau Oy, L&),
Zy Z; ¢ 0

and the probiem is to test H: @,,=0. Though this is not the so-
called MANOVA problem, it is essentially the MANOVA problem
from an invariance point of view. In fact, via invariance it is
reduced to the problem of testing ©,,=0in the model (£, Z%, L) ~
N, 04, 0), IRZ,,) which is a MANOVA problem. Therefore,
the above four tests are most commonly used and the Piliai testis
LEI (see Schwartz (1967)). Further, we obtain

Proposition 7.3. For testing (7.13) in the MANOVA model (7.12),
when min (7, po)=1, all the four tests are equivalent and they are
UMPI in 5(§).
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In the GMANOVA problem with z,>>1, and rapk{Xy)=25,+2,<¢:
even when p,=1, none of the four tests are even conditionally
UMPI though they are again equivalent. Thisisa different aspect.

In the original term, when X,=1I T is expressed as (2.30) :

T, = [X{X1X) " X Y XX Y MY XD
X XX LX(X{X) 1 X5] e

(7.15)

where N, = I- X (XIX)7 Xy It is noted that T,=0 if X,=1

7.6. Ezamples. The case my=1 corresponds to the case that the
order of the matrix X; in the restriction X BX, =X, is Ix(1+ng.
In the following examples, the LRT is UMFI in the class 6.(%)
because n,=1. However, it is not UMPI in (%) unless X;=1, and
there s a locally best invariant test in the class, which is derived
:n the mext section. But we may use the LRT for its distributional

convenience and the optimal property we have seen.

Example 7.1. (Potthoff and Roy {1964}). Suppose we have m +1
groups of animals with sm; apimals ijn the j-th group, and with
each group being subjected to a different treatment. Amnimals in
all groups are measured at the same ¢ points in time and the g
observations on a given animal are assumed to be multivariate
normal with unknown covariance matrix 2. The growth curve

associated with the j-th group at time 2 is assumed to be
Bt byttt (=1, mt ),

Then the model can be expressed as Y~N(E(Y), I®8}, where

Y, €, 0 g Lo 1

H..u [ £ .ﬁu......ﬁa

EY\=E u = . —
Yo 0 Comnyar Mayt. - e #l -

Y=Y (=1, m;tk=l,-q),

ﬁmn..ou mmvf ] mu...b t1x ﬁm.._au.u C_.“Hu b} uwu.lTHv.
test the hypothesis that there is no difference among the (n,+1)

Qi.m.”ﬁHu Ty H.u s SmXHu

and §=

Here suppose we wish to

groups. Then the hypothesis can be written as X.BX,=X, where

mu.
X,=0 and B=| : [

Wau...w

Xo=[L, ]t mx(m+l, Xi=L,

Therefore in the case z;=1, we have two groups of animals and

test the hypothesis that the two groups are equal.

Example 7.2. Let y{)= (&), 7.} be a pX1 vector consisting
of p economic variables, where ¥{f) is observed at time t=1,-,n
.mum y()’s obey N(u(t),Z) independently. Here (8] =810 Bt (i=1,
-, p}. Then as has been seen in Example 1.1, the model is
expressed as ¥Y=X;B+E with E~N(L®Z}, where

11
Bie BB
121:1x2 and B= o T 2Xp

P 11 mﬁ...mﬁ
1

iaxp, Xi=

" And the hypothesis that the growth rates Bu’s in w(t)=8B:+8But

are all equal or By, =By =r--=8, expressed as

1 0

-1 1 - - -

X;BX,=0 with X,=[01] and X;=! 0 -1 - - 0j:px(p—1.
- 0 - 1
o - 0 -—1

‘Hence when the means u:(t) are lnear in t, the problem corre-
‘sponds to the case z,=1. In this problem, because X,=1I, the LRT
is UMPI in the whole class G(%).

Exmaple 7.3. From Example 1.3 in Chapter 1, the problem of



testing m=p2 in Naip, %) based on a random sample where p= Lty sup, | [, B)~a— B$)47/4] = 0.

{ul, w2 2 X1 is regarded as a GMANOVA. problem with n,=1

and X;=1 Hence the the LRT is UMPI in {5}

Further, the test with the critical region

Ko tr{I+ Ty La, Ty I+ T) —I] > &,

Example 7.4. From Example 1.4 in Chapter 1 the problem of
testing py=7, based on random samples from Nig, Z) and Nig, 2),

where p=(p, g8’ * (P+g®1 and a..ﬂ?m, g’ T (P XL, is regarded

as 2 GMANOVA problem with #=1 and X=1IL Therefore the
LRT is UMPL in 6(%).

is the unique LBI test in 6.{%) and so it is admissible in 6.(9).

The proof of this theorem is given later.

Theorem 8.2. Pillai’s test &, : trTy(I+ 1))t > &, is the unique LBI
test in G,.(9). ,

Proof. Under the null hypothesis H,, 7} and T are independent.
Hernce by Theorem 8.1, for ¢E8,.(5)

8. Locally Best Invariant (LBI) Test.

8.1 LBI tests. In this section, we derive a unique LBI test in
the class of

6.9, the class of E-invariant size ¢ tests in 6(%), B($) = axtrEolT+ T (@ EoL 6T Tull+ Ty~ — I},

(T, T:) (see Sections 4 and 5}

But from T,=2,,V3#'Zi with Z,;~N(0, X5y}, the distribution of
T. is the same as that of Q7T,Q' for each QEI(x,), which implies
E,(I+T,)*=cl for some ¢>0 (see Lemma 6,2). Consequently,

“-invariant level a tests based on
and a unique LBI test in Goa(F), the class of G-invariant size @

tests based on T} alone.
Let

Big) = aawcE LT trTe I+ T — aaeens.,

A=4(8) = ZEd, =tr 0, 25501

. Applying the Generalized Neyman-Pearson Lemma (see Section 1

where §=(8,, -, 8,,) is the vector of the ordered characteristic roots of Chapter 2) and maximising 5(§) yields the test /. Thie com.

of ©,F740%: The following theorems give our main results here. sletes the proof.

Theorem 8.1. There is a 4,20 such that on the set {8{4(8)<C4,3,

the power function of any test ¢ in 8.9 is evaluated as

- Theorem 8.2 also follows from Schwartz (19672). In fact, since
"given Ty=t,, the conditional problem is the MANOVA problem
m.b& since tr(I+T;)"*<n,, the result follows.

In the case ;=0 where T, vanishes or X,=1 the LBI test %5,
in Theorem 8.1 is reduced to Pillai’s test X;, and the case p,=p,
=0 where our problem is the MANOVA problem, both ¥, and X5
are naturally reduced to Pillaf’s test in the MANOVA problem.

- In the investigation of the admissiblity of the GMANOVA tests
{see Section 12), Marden (1983) says as follows. The LBI test X

(8.1) (9, 8) = & + B¢l + old)

where o{4) is uniform in ¢EBG.(F),

(8. 2) Bl¢) = hpmo?ﬁﬂ_r H._LﬂHQH.T .H.nulym&ou..uﬁ.+ uquulu|m.”_ + .n_.puw..

{8.3) ao={y Fa—pa/ e, &= (27,)7

and E, denotes the expectation under H, : 8,,=0. That is,
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has the drawback, shared by the Pillai test s, that there may be
a sequence {87} of parameter points for which "o but the
power does not approach one. The pumerical work shows that this
drawback can be serious for small 7, but lessens as n increases. In
comparing the LRT to the LBI test, it appears that the former
is better when §=1(5;,0,,0) and & is large, and the latter is
better when 8=({8;, -, 3.} and 8, is small. For smaller » the
differences are more pronouced. A more detailed study would be
aeeded to pin down the relative advantages of the two tests. Mar-
den (1983) in fact carried out a Monte Carlo Study to see the
difference in power of the two tests (and some other tests) for
various values of 4 for «=0.05. Each difference was caleulated
using 100 pseudo-observations. The table below exhibits the maxi-
mum the LRT beats the LBI test and the maximum the LBI test
beats the LRT test, where each maximum was taken over between
10 and 15 parameter points. It also contains the maximum power

the LBI test was observed to have.

Mazima (standard error)

(713, 72y, P2, o) Form of & | LRT beats LBI|LBI beats LRT| Power of LBI
5,2,2,2) @,0 .34(.05} 174.08) 59
(8,,3./10) 21(.05) .14.0.05) 78
(8:,8,/2) OL(-02) .30(.05) .98
(3.8 -009{.002) .220(.005) 97
10,2,5,2) (8,0 .324.(.005) 0404.004) 89
(8,,8,/10) .28(.05) .05(.04) 36
{81, 8:/2) -030(.002) 087 (-004) .986
(81582} .021(.002) .084.(.004) 985
{20,2,5,5) (6:,0,0,0,0} 075 (.003) .009(.003) 976
(8,,8,,0,0,0) 02(.02) .06(-03) 998
(8:,84, 0,8 001 (-001) 046 {.008) 1
(20,5,2,2) (8,,0) .116{.003) .002(.002) 985
(81,82 -000(-000} .030(.003} 999 _

8.2

first review our reduced problem in Section 5.

Evaluation of probability ratio. To prove Theorem 8.1, we

Let

Am.. 4) (Th, Uh) = ({(Z13, Z13), (Z 52, Z 33))

and let B,=0(n;) X Bln,) X A, with

Az Ay
0 Ads

A, = {B= |id;]+0 =1,2)}

and the group acting on the left of (IR, Uy) by

(8.5 gl U= (RUB, PUB) for g=(P, P, BIES.

Then we have shown in Section 5 that the class 6(%,) of F—
invariant level @ tests based on (L7, Uj) forms an essentially com-
plete class in D(F). Noting that (T4, T,) is a function of (U5, Uj),
the class €{€) of H-invariant level o tests based on (T, T%) is equal

to the class €(%,) when each test ¢ in G{%) is expressed as a test

on the coordinate space 7y x 7, of (Ty, 3). Hence an LBI test in
6.8, is an LBI test in 6.(%) and vice versa. Further, let J=
JIU., U,) be a maximal invariant under % acting on (T, Us) as in
(8.2), and let P7 be the distribution of J under £=0,,Zz!f. Then
the ratioc dP1/dP{=R, is given by

(8.6) Re=exp(—4/2)f, [ exoltrt'PAWdbt Widi]
X dBIh B dB)

where
S (8.7) h(B) uﬁgl.wqmm,u\b with D= exp Twﬂ&wfawu

(8.8) wldB) = | Andp|Mrai3| A AL P02 Aged Agyd Aoy

M=n;+n3—2ps

8.9) (W, W=UC'= (Z1: 0t Z 0%, Z1:C%) 1 mX (prtPa)
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ed,

0.1  ClUIU+UIUAC" = Lvss and C=(C:)

(see Lemma 5.3 and ((6.2)).

Now we shall evaluate R around A(8)=0 as follows.

Lemma 8.1. The ratio R, in (8.4) is evaluated as

(8.11) Ri= 1+ a;{l+ H»wlp_..aauwﬁ‘.fmﬁil.ﬂ+3Lh + oftr£E”),

H-NV or hﬁﬁa .G‘uv.

where oftrkg) is uniform in (T,

To prove this, expand the integrand in (8 6) as H+W+1Wimﬁ+

o(K?) where

(8. 12) K= ﬂum...wp.—mﬂu.m._r + tE Py WoAl =K, +K, say

First, note that the integral of (tc P, Q)% over @ln,) with respect to

v {dP) is zero for & odd and

Lemma 8.2, (James (1964) (22) and (23) with E=1. See also

Appendix D) Tet A and B be pXP matrices and let » be the

invariant probability measure on O(p). Then

«+ APBP'v(dP) = tratrB/p and

8.13) o5

(8.14) bg (cr AP)(dP) = rAA'/P.

Hence the integral of K in (8 12) over Olny) is zero. We
evaluate the integration. of ﬁuuﬁ+wﬁpmﬂu+m\nw term by term.
the integration of K2 over Olm) is equal
and the integration of KZ over Clm) is
other band, the intergration of K. Kz

First, from Lemma 8.2,
to tr Waodnt'E A Wil 7y,
tr ﬁ%m\mxﬁuu ﬂ\ﬂ.m\ 7. On the

cause K Kz isan odd function of Az and because

over A, is zero be
of Az and A from the form of

Ay, ~ N, IRI) independently
R{B)uldB) in (8.7) and (8.8). Hence

116-

HANS.EMUL

{n1)xAg

h(B)uldB)

(8.15)

i

= }?.ﬁﬁ?mm}iqﬂﬁ,ﬁmm?m%{a@ﬁ

To evaluate the integration of tr WiW,ALE't As over A, mote that
from (8.7) and (8.8), the marginal density of 4s is

Hruﬁ.hnuy = n.._xﬂ.un.b..uu_ g\NWUﬂvﬁlW.Mﬂbunh\ﬁv?nﬂ&kﬁ,wuv dqm,ﬁr
Fuﬁnﬁﬂuuv = | Agpdis) —*32d Ag,.

Lemma 8.3. Under A=BC where (B, C)=GH(p) *x0(p), Gl is
homemorphic to GF(p)x O(p) |=#/*
44 on Gilp) is factored as MdB)t(dC),
set of pxp lower triangular matrices with positive diagonal ele-
ments, MdB)={[Ib7)dB with BEGHp) is an invariant measure oo
GH{p) and =(dC) is the invariant probability measure on aip).

and an invariant measure [.Ad!
where G(#) denotes the

Proof. See, e.g., Wijsman {1967) page 398 or Eaton (1983} page
213.

Based on this lemma, let EE&&H?E@?LAQ with A..=EQ,
where ©{dQ) is the invariant probability measure on O(p,) with
Qe0O(ps) and M(dE)={lex)dE with E=(e;)EGH(p,). Under this
.mmooﬁm.omwﬁob, the integration of tr WiW,Q E't'¢EQin (8.15) over
Oip,) is tr Wi Wr EE'Y g/, by Lemma 8.2 and the integration of
this term over G{p. with respect to c| EE %/ Nowmﬁlwﬂnm‘m.ﬁ Yool dE)
is Mt WiWitrE'E/p. since EE' is distributed as Wi, (I, M). There-

fore

(816) [, (WiWALE 4B pdB) = (M/p) dtx WiWs,

On the other hand, since the marginal distribution of Ag 1s
the integration of tr Wi LEEAL over A, is simply

N0, L, @1,,)
.mnﬂﬁgﬁm‘m- Therefore from (8.15) and (8.16),
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&.17 W.Fii,m@ &EES%E

= (2, LM/ )t Wi W2 + o WiWsl.
Here we identify o WIW; by

Lemma S.4. €1 tr Wi W, = trx(x'x+ Voga) 2 T+ T2) 7
= ﬂHH..uﬁH.lT H.MVIHHHNT Su -
@) twWiW;= iy — e+ T2 7

The proof of this lemma is given in Appendix E.
This lemma with (8. 17) gives the first two terms of Ry 11 (8.11).
proof Lemma 8.1, we need to show the integration

To complete the : .
% Olny) is of order oltr£g’) uniformly in

of the term o(K?) over Ay :
(T, U or (T4, T,. Using Schwarz's inequality in (8.12),

(8.18) K*= \nnmm;ﬂﬁnmﬁhmnbuu + 2(trEE )t WiW, AwmAs:
e tr Wi Wl dgn 12 -+ trEg'tr WiW, AlsAss
Wﬁ.mm..hﬁul_].ﬁbﬁﬁﬂkﬁunh—mi‘q,ﬁgmwu
+2(tr Ay Aintr Ass Az 127 = trft/y{ Az, Aad)

The second inequality follows from trAB <trAB for 4, B ed.(p)
and tr Wi Wi<p,+ps (i=2, 3), which follows from (8.9) and (8.10).

Therefore
619 - ] o KPR BB
= oltxtt) [ lAum Aub(BIudB) = oltrsE’,
which completes the proof of Lemma &.1.

6.3, Proof of Theorem 8.1 Let ¢{T T E6.(8) =051, the

power function of ¢ is for 4 =trEf’ mear zero

(8 = | $(T TIRPET:, T E=0) = a+BlgMrold

where R, is given by Lemma 8.1. Applying the Generalized
Neyman-Pearson Lemma (see Section 1 of Chapter 2) and maxi-

mizing Big) with respect to $&B.(F} yields the unique LBI test

X s given in Theorem 8.1. This completes the proof.

9. Local Minimaxity of.the LBI Test.

9.1. Definition of local minimazity. Once an optimal test is

obtained, our mext concern is to derive or approximate the null

distribution, But for continuation of the argument, we first consider

minimaxity. Generally speaking, the minimaxity property of a test

is hard to establish as has been discussed in Section 6 of Chapter
2. In Hotelling's T?problem, which is 2 special case of the
MANOVA problem, Salaevskii {1968) proved the minimax property
of Hotelling’s T-test (see Chapter 2 for the minimaxity of a test). i

In this section, we prove that the LBI test is locally minimax in
the sense of Giri and Kiefer (1964) (see also Schwartz (1967) and
Giri (1977)). In Giri and Kiefer (1964) Lemma 1 states the condi-

tions under which a given test is locally minimax as follows.

Let (£,58) be a2 measurable space where FCR! and B is a Borel
o-feld, Let p(-:4,£) be a density with respect to a o-finite

measture # where 4 is a real parameter, £ is nuissance parameter

and the range of § may depend on 4. Consider a testing problem.
H,: 4=0 versus H : 4=x (A>0)

Definition 9.1. A test ¢* is said to be locally minimax of level
@ (0<a<cl) for testing H, : 4=0 versus 4=X as A0 if

. infem(d® uE—a
©.v lim, SUPpete 10Te ([ ME) —& :

where 7{$,(ME)=E[$|2.£] is the power function of ¢ and @, is
the class of tests of level a.
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1. Under the following three assumptions, the test ¥ is

Lemma 9.
g H,: 4=0 versus A= as 0.

locally minimax for testin
Assumption 1. There exists a statistic Ulx) such that Uis bounded
us distribution function for each

and positive and has a continuo
for A< Ao, and such that

(4, £ which is equicontinuous in (4, &)
d*(x)=1 if Ulx)>c and $*ix)=0 otherwise.

) =a and m@*?,mua,_.iz,fm?m,

Assumption 2. E{$*10.£
R0 for A>0 and ROV =

where .m.?mvﬂ.o@?: uniformly in &
O\

Assumption 3. There exist probability measures fon and 7. OB

the sets {4=0} and {4=X2} respectively for which

.?ucn 2 (dE) =1 + RONTEMN + Ulxr ()] + Bl A,

g
[ ot 0.8)7mnldt)

where O< o) Lol for » sufficie

Bla,M=o(h{M) uniformly in Xx.

9.2, Local minimaxity of the
minimaxity in {9.1) is a n
minimaxity

9.2 infy (%, MED = supginfs widn Buf))

where £ is regarded as an original parameter @
function of £ so that for given M
pazameter space of E.
©,,=0 in the model
Zi2 Z1s Q0 Zaa Fas

— .N/ﬂ 'y M‘aw =u® V
.5 Zy Zs Qo of ™™ \5w B

Here £ may be regarded as (@12, 22, Z 23 5 s
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atly small, =00 and

T.BI test. The definition of local

atural extension of the definition of

ndMisa real-valued

Aw=nlE) gives a restriction on the

One of our reduced problems is to test H,: "

;) and & will be taken to " fact, if there exists a locally minimax F-invariant test of size «,

9.4 A=0M0:5,Z 20y Z 23, E00) = tr @1, 87500,

For a given ), it may be possible to find a minimax test ¢¥ which

satisfies (9.2) on the contour
(9.5) Cy= ({012, F 20 % 20, a3} | MOy5 E oz, Bag, Tag) =)}

or to show that a given test is minimax on the contour C,. However,
not only it is difficult but also ¢¥ may depend on . In the defini-
tion of local minimaxity, » is let to go to zero. But w(p, (A E)) is
continuous in (0,%) and =($,{0,£))=c under the null hypothesis &5
=0, since @=0 if and only if A=0. Hence {9.2) is reduced to &
trivial relation as A—0. This is why in (9. 1) e is subtracted from
the both sides of (9.2) and the ratio of the two terms is taken

before A—0, Understanding this point, we prove

Theorem 9.1. The LBI test & is locally minimax with respect to
the contour C, in (9.5) as 30 under the model (9.3).

It should be noted that the class of tests @, in which we claim
the local minimaxity of & is not restricted to the class of &
invariant tests of size . It is the class of all tests of size a for
testing @,=0 in the model (9.3). Further, this theorem simply
chows the local minimax of X5 on the contour C,. In. the MANOVA
problem, Schwartz (1967) defined a Hoom.H family of contours con-
taining such a contour as C,. His argument is applicable to our
case to prove the local minimaxity of 4 for a wider class of

contours.

It is also remarked that if any $-invariant test is to be locally

minimax with respect to C,, it must be the one which is LBL In
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we can restrict the class @, to the class of G-invariant tests of

size @, Ba (9), (see Section 6 of Chapter 2) and by Theorem 8.1, for

a2 B-invariant test ¢ of size o, the pewer function of ¢ is given by

z(p, 8 =+ ABlg) + old)

with 4=\ in (2.4). Hence in 9.1
sup, infy w(p, 8 — &= supg 4B{d)+old)]

so that
limaa 4B(¢%) +old)]/ sup,[4B(¢) told)] = B(¢*) /sup.B(9)-

For the right side to be equal to 1, Big*) =sup,Bi¢), implying ¢*
is LBL Hence the Pillai test in our problem is not locally minimax
though the Pillai test in the MANOVA problem is locally minimax.

A crucial point in the proof is to
(see Section 6 of Chapter 2} to reduce
s of tests of size & which

9.3. Proof of Theorem 9.1,
apply the Hunt-Stein theoren
the class @, of tests of size o to a clas

are invariant under 3 group. In fact, the Hunt-Stein theorem says

p is solvable, there exists a minimax test which is

that if a grou
Hence the class 0, in the definition

invariant under the group.

(9.1) can be replaced by
m.ﬂ.ﬁﬁmunwd.mm qﬂ?@u gemvu —
the class of invariant tests. However, the group Wwe

have been adopting does not satisfy the condition in the Hunt-Stein

where I, is

theorem, because

Ay = (B=(4s) G, 7=2, 3| A5=0, | 4s| +0 (i=1,2)}

in B, of Section 8 is not s
we take group £=0(n)xCing
X Ol7zg) X Ag In Section & where B is the solvable group
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olvable. For this reasonm, in this section

1% 8 which is a subgroup of &,=0(m)

\w»u
O Wuw

wnu

(9.6) B={B= |BaeBUlp) (i=2,3)}.

H ) i

Wﬁ.m Mﬁ@p is the group of p;Xp; upper triangular matrices. Note

. m.% {p:+ps) and the group £ satisfles the condition in the Hunt-
tein theorem. This group £ leaves the problem @,,=0 invariant

in the model (9.3) under the action

@7  oll,T) = (P.UB, BUB) for g=P,P,BEL

where as before

(9.8) (U, U =UZ 10 Z13), (Z 30 Z3a))

Since £ is i
a subgroup of &, any ¥ invariant test is Z-invariant

Lemma 9,2. i
e 9,2. Under the group £, a maximal invariant parameter is
ZF0L0,E2%, where ZEFEFU(pa).

Proof. Similar to the proof of Lemma 2.1 and so omitted

As a consequence of this lemma, without loss of generality we
can replace (@1, 52253230 by (£, L0,I) with E=6,,Z7F where T¥h

€EU(p,), whenever we consider the distribution of a maximal

invariant K=K(I, U, under £. Therefore formally the argument

Wmn.m is parallel to the argument in Section 8 and the probability
ratio Ry=dPE/dP¥ here is also given by

(0.9 Re=expi=4/2) [ f, explect' P(W.BL+ WiBR)]
x.(dP)R(BIE(B)

R(B) = mﬁuT.w&wwib with

D= b&ﬂlwﬁww\vmiﬁ




(9.11) BdB)= _‘msmmnﬂ?.uﬂnﬁwnb | Byo B! (+75) /2 zo(d Byold B
75{dB; =1 215 dBy (7=2,3)
M=n+ns—"Pe

(9.12) (W, Wi) = Ul = (Z 1 ,Chat Z1:Chy Z:Cx)s

(8.13) CLUIU+ UIUIC' =1 and C={C,)EL.

Here b{f)u is the {i,k) element of Bj;. Note 7;(dB;;) is an invariant

measure on SUlp;) (1=2, 3).
Under this preparation, we verify Assumptions 1, 2 and
1. To check Assumption 1, let

3 required
in Lemma 9.

{9.14) U= ﬁnnHle..uu..H_..?mwﬁ._. )t —bI]+1

where Fuﬁxﬁ._.muluv&\ (27,02 and b,=1/2n.. Thea the LB test X5
is described by ¢*(U), where g*=1if U>ca and ¢*=0 otherwise,
and U is bounded and positive. And with A=trgg’ and E=0,.I%5,
the distribution of U is continuous for each (4,8 Further, by
(8.1), for 4<some 4,, the distribution function of U is given by

(9.15) Fllelagl =1~ El$:|4,81=1—ald) — Big)d+o.id)

where ¢AU=1 if Uze and & (UI=0 otherwise, and ale)=
El¢.10, 0j=E[d.]- Here the remainder term o fd) is defined by
mﬁ@%qvuﬁﬁu:o.ou. where (K% is given by the left side of (8.
19). From (& 18} and (& 19), |o(K3) | <ad for some a>>0. Hence

for ¢'>>¢ and for A< 4,
louldi—oddl| S ad| Eqlpd—Eolde 1!

and so

ﬁm.q?\_nwmvlm.ﬁngumgdm_ag1&ﬁni
+|Blg)—Blg) 4+ |etle) —alc | ad,
Sipce alc) and Big.) do mot depend on {4,§) and since these are
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is equicontinuous for J<some i

FU(- 14,8
Therefore Assumption 1 is verified.

To check Assumption 2, set $.=a in (8.1) to obtain Blp.)=0
from miped)=ca. Since the LBI test ¢* is a unique maximizex of
Bl$) with respect to $E6LG) for Q<a<l, we obtain Bigp¥>0=
B{$n). Further, since by (8.1}

uniformly continuous,

Ele*|4,£] = a + Ble¥4 + old),

Assumption 2

setting 4=h, Rin = B{¢*In and h?mvﬂe?nmm\vﬂogu
follows. Finally we verify Assumption 3. Under the group £, the

probability ratio of the distributions of a meximal invariant K=
K(U, Uy under £=0, 5537 is given by R, in (9.9). Of course, Re
is the density of K with respect to PE.

Lemma 9.3. The ratio R, is evaluated as

wmuH|mm;nH+m5¢+H:s,m+nau
N1

{9.16)

where o(4) is uniform in W, and Wi, with ldBa) in (9.11),

17 8= [, oo ts WeBsS §B il BaBal

9.17)

¥ expl— .Wﬁnwsu.wsnv ToldBu) /Dy

Dy

,_\.%ivuv ﬁmuquLE._.umuﬁ@A.II.WI&HWSWEH»EWSV.

Proof. Expanding the integrand of Ry in

©.9) as 1+J+5J*+olJ?)
2

where

ﬁm. Hmu ..N“ ﬂHms‘Tvﬁ.ﬂ‘uanLlﬁHm...ﬁuﬁﬂ.uw‘S = .Hu.l_lh.f 54Y,

the integration of J over B{my) is zero by the same reason as in the

in Section 8. Further, in the same way as in (8.18},

case of R,
the integration of the term o{J?) is shown to be o(d) uniformly in
(7, Uh). We evaluate the integration of J2
the integration of J 2 gver. Oln) is sr WoBLt' §B . Wifny while
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From Lemma 8.3,




the integration of J% over Oln) x B yields tr W, WitEE /m which
is equal to mmmplﬂnﬁfaﬂwﬁpu\mp by Lemma 8.4, since B~N0,
IRD. And the integration of JuJ, is zero. Hence

R, = exp(—4/2) ﬁ+mwlﬂm?,iﬁﬁ+ 7)™

+ rqﬁmwmmmsﬁﬁwvm@:+%:

Since aunm.ﬁlh\wvﬂwlh\mi_.oﬁ: and mwbnm R(B) is the density of B

with respect to BdB) in (9. 113, using the marginal density of Bz

we obtain the result.

In Section 8, the integral in (8. 17) was over Gl pa} jnstead
of BU(p,) (see (8.15) or (8.16)) and hence resulted in (Zripn ™

Mdte W, Wi for arbitrary & This is not true now, but if we can

show that there is a special value of ¢ for which the same result

holds, then for A < some Mo
(9.19) R,=1+MU-1]+ o(d}

follows from (9.16) and the defipition of U in (9.14). Therefore
putting the probability measure 7 oh that particular &, Assumption
5 i verified with A =Blg* RO =—B* ™ rM=Ble*™ and
Blx,\) being the last term in (9.16). We show the existence of &
such that

I(W,, £) = (@napo)  MAtr W. Wi
for any W. where A=trgf. For any matrices A and I', define

(9.20) r{4,I) HU%._. {trI"'8' AS) ﬁm‘mE;w%il.wlﬁu.w‘muﬂw@mv.

GE aw»u

where for simplicity B,=S" Let I =ly;), A=las) and S=(s;;)-

Then txI'SAS'=Fint Tusidiasu but the integration of sisu gives

0 unless i=k and j=L Thus only Tum7edsish remains in the

integration. Define for 1]
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(9.21) P.nUn?;mm,_Sumx@?iwnmmssamv (>0).

Let C be the lower triangular matrix with elements ¢;; and let

W = (theyene Bps) With 2 =% Then
(A, ) = Tejtti@;Ci; = MQ.RM..H.EH&LA&..

In order that this be proportional to trd, Timjuicy=const=c,, say,

is necessary and sufficient. That is,
w'C = e’

is necessary and sufficient, where e'=(1,...,1}, and so u’ =ce'C?
since |Cl= 0. With this choice for u, (4, =ctrd and in
particular i, IM=cptrI=c, 0, But as in (8.17), (I I=Mil.
Therefore co=Mp,; trl" znd finally AT =Mp, trAtel” provided
the i-th diagonal element of I' is proportional to the i-th element
of 'C for all i=1,...ps It is noted that cy=n'+2n and c;=n
(347} so that all the elements of e@C™? are positive. Taking r=¢¢

and A= WiW, proves our claim.

Thus we have verified all the assumptions required in Lemma
9.1 under the action of the group £. By virtue of the Hunt-Stein

theorem, we obtain Theorem 9.1

10. Distribution of the LBI Test.

10.1. Ezact distribution. When m=1, we first derive the exact
distribution of the LBI test as in Kariya and Kanazawa (1978).
When n,=1, let

(10.1} W= (ng—ps— P2+ 1) T/ P2 and We={ms—pa+ 10 To/Pa

Then as has been seen in Chapter 7, the conditional distribution

of W, given W, is a noncentral F distribution with degrees of
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Mind)
the distribution of

freedom {pa, ms—pa—pa-t1} and noncentral parameter =

4/2(1+1;) where =0Tz Using this fact,

G.O. Nv »WH“N..»\RHnTﬂ._L m.bth M»"H\G.lmua.ﬂ.nv

is given by
S, given Sz ~ Belp./2, r/2:5:7/2)

{10.3)
Ss ~ Belg/2, p4/2)

where Bela,b-t) denotes noncentral beta distribution with degrees

of freedom (a,b) and noncentral parameter T, Bela,b)=Bela,5:0),

{10. 4} re=ngepy—pitl and g=m—pstl

Let Eu"?@Hmwﬁaqmﬁ_luﬁ.upﬁiimlw P,(j:p)=pie /]! and T=A/2.
Ther the joint distribution of (51,57 is given by

10.5) hlsusys)=ErBulbrmsdbisc: Sorth rblss 3o 52

where 0<s,,5,<1 (see e.g., Johnson and Kotz (1970)). Since the

LBI test statistic is

G.O‘ mv q _”ﬁwa“NJu.ﬁHl_l\H.p IHU\ H.l_le.N _“Qo.m-wllHH_.Wu

with ag=(L+ms—23)/ Pz the nomnull distribution $unction of U is
given by
(10.7) Qlz:t) = NQP.MHI“SMNMH?

we distinguish the following four cases: (1) x=ae
It is noted that

To evaluate this,
—1. (@) 0<z<a—1, 3) —1<z<0 and (4) z<—L
a,>1 and

Pylkresy) = PRI ML 7) Byl ft) (— 1)s5H.

The following results are easily obtained by integrating (10.5) over :

each region
Case (1) z=a,—1:Q(=z: 7)=1 and so Q(z:
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Case (2) 0<z<a,—1: Qz: 0)=Kilz: 7} + Kz s 1), where
Kz 1) = anePolk t 1) F(7 2 o) (—1)
4. p_; P2 q P Ent B )
x[B(gri BYB(E H)(EEE s 5)
Kolx =TT Tanee® Polk : T)Fols ¢ z)(— LItz

r

jta+g+i, 5

cacma(PR 5ol Palen T
xI(Z%r %)

where [=¢/2+k+],

= ._.ﬂ_nw@ t o, BYdt and J(z: o EH%”H?H@IH%J&.

Hence the null distribution

Iz:a, B

is given by
z+1 . .ﬂu

=% 3
+ MunMuh A%u\W«| Hv AQ +_® ...MAN\N| Hv A] HV AQ. + %Iu I_..Hn+qxn&lﬂulnl.m

<[5(% 585 S (o arett %)

Case (3) —1£2<0: Qz: 7i=Kilz: 7)+Kslz * 7), where
Kz 1 7) = TiX Tasse™ Bolk 1 1) P {7 ¢ ) {—1V*e(a D) H—x) = el

N R I AR A )

xI(ZEL: Zerksp, ).

@QHQMA

q.
2

Hence the null distribution is given by

%)

HTAQ\TWVIH AI-HT:?..uam

§es 52

241 . .?_

Qg

QuusnA

..TMR M‘mml.

[a(g+e. 5Vals

A?\wapuﬁa+m+%\mlpv

2)

q

Z z+1 . F+_®,

g
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Case (&) z<—1:@Q(z: 7)=0 and so Qlz: 0)=0. Note Z€d,(p). This assumption is equivalent to saying that lim

XiX./n is 2 positive definite constant matrix in the original term.

For & given «, the cut-off point ks is determined by Qiks: 0=
1_g and the power function of the LBI test is given by 1—Q(ks : T)
with T=9/2. On the other hand, the significance probability for

an observed value g of U is 1—Qls 2 0).

By a similar argument, the limiting distribution of b3 under the
alternative is the same as that of XX, where X~Ni (WEDLERE, In
®1,,). Therefore the limiting behavior of the distribution of U is the
same as that of Th=trXX'. Since te XX ey btr@ . Zo D),

10,2, Limiting distributions. In & general case, et us first observe

Us— .nH@SM Mu@mu

that when oo, the limiting aull distribution of the LBL test
(27, Pt 4201, 22301

— Ni0,1) as n or b0,

statistic

For a given level a, the critical point k. for Us is chosen so that
a=P(U>k,]01,=0) for each =. Hence a=1lim,eP (Us> k.| 601:=0)=
Plxa, AN R Therefore

{10.8) U= ﬁﬂﬁ;‘n.ﬁimmuﬁmwf H.Llul?Hu + 7y — Ry Papalb

is y*-distribution with degrees of freedom 7102 i.e., x*(m.pa), where

b=n,+ns—ps. The 2ddition of the correction term n, pr—nuPebe/b
is justified below. We first assume Z=1I without loss of generality

lim P(UsSka| O12%:0) = lim Pt : bir®,, B0l o O£ 0) =1,

implying the LBI test is consistent.

as U, is invariant. Then since phim el V.o/n51=I and since Z o~

N{O, HE®H3U.
(10.9) plim Tz = EwB:»sA »N\Mu%u%uwvlph WMN % =0

Hence, as Zu ~ N, L.®I,) ander the null hypothesis and as
Zyy~ .Z‘ﬁo. .HE.@HMLM

10.3. Asymptotic null distributions. For the Lawley-Hotelling test,
she Pillai test and the LRT, Fujikoshi (1973) derived the asymptotic

expansions of the nonnull distributions up to order »7* in the cases

of @,,=0(1) and ©,,=0in"%), We here simply concern the asyTaptotic

expansions of these tests and the LBI test. The following results

are based on Fujikoshi's expressions with @,=0 for the former
three tests (see also Fujikoshi (1970}). For notation, let

(10.10) PlimpswteTs = Blimuul I+ T 20w 2 NSNS

() 12 2 Vo (L Y T = 2o

22.3 a2
Ny 7i3 73

f=mba Y=+, 1 B=ni+pi—5
I,=(3f—8)vt-+4y+4{f+2), L=—12fv%, L=6(8f+8)%
Is= 4.&Hmu..,+.._.m3u+§s+ﬁun+wﬁ and Fﬁwmqum..muqffpéuf.pq;umﬁ.

Therefore, from lLim (B/n5)=1,

ﬁu.o. HHV ﬁHWHﬁ.Hunvuuq“ = QNHNNMN

: Further, let G.{z) denotes the distribution function of ().

which is distributed as x*(npsl.
Under the alternative hypathesis, Z 1o~ N{B1s, IRZ,,;) where ®.5

and Z,, depend on 7 (see Section 2). Here we assume

(1) The Lawley-Hotelling test statistic: Un=matrT) where ma=s
l.ﬁu|w&u.lH.

PlUS2) = GAAZ) + LG A =2G ral) +Gredl]]

A2,

lim, @/ v =& and 1M sed = Z.




+ &qﬂmrﬁmfg + Olmz?)

(2) The Pillai test statistic: UsEmgteTe(+ T where m3=7,+7a
|....ou..Hm‘.

(10.12) P(USz) = Gyla) + MwuTP@?NQ?E|Q\La:

+ umwmw; G el @) + Ol

(3 The LRT Statistic : Uy=m.log| I+ 7] with mu=ns—ps+{m—Ps
—1)/2.

U] = Gyls) + el ~G =)+ G pedal] + O

The choice of the correction factors mg and m; in U and U, is
due to Fujikoshi (1973a), while m, is known as the Bartlett
correction factor (see also Sugiura and Fujikeshi ((1969)}.

Now using the distribution of the Pillai test statistic Uy above,
we derive the asymptotic distribution of the LBI test statistic Us
in (10.8) up to order 21 or b~ There the correction factor 7,0:
—nupops/b simplifies the final expression of the asymptotic distri-

bution. Our result is as follows.

Theorera 10.1. The asymptotic cull distribution of the LBI test

statistic Us up to order b~ is given by

(10.18) PlUSa) = Gl + THL—Cla) +2G ruale) =Crrd)]
1+ £227G ()= Gl ] + OB

where b=n,+m,—p; and G(z) is the distribution function of ¥*(f}

with f=npz.

The proof is given in 10.4 Pelow.
It is noted that the first two terms in the right hand side o

132

(10.13) form the asymptotic null distributien of U; up to order &%
Hence the difference is the term fo[Grla)—Graalz)1/2b (up to
order b1, If py=0 where T, vanishes, the result is naturally
reduced to the case of Ul

It should be remarked that the expansion is formal and the
validity is pot checked here. On this point, the readers may refer
to Bhattacharya and Ghosh (1978) for 2 general theory, Kariya
and Maekawa (1981) for regression and Fujikoshi (1984) for a

multivariate case.

10.4. Proof of Theorem 10.1. Without loss of generality, Z=1

is assumed. Then (10.9) implies
T, = $ZuZ% + 0,(b™) and
[+ T = T Ts + THUI+ T = I~ § 2120 + 0,67)
as T, is nonnegative definite. Hence from {10.8),

U, = tr(J— WNK.N#L. 0y BT I+ Ty t—pd 1+ mpa— 7, Papalb

= QM!W trZ 1o B b T T+ T ]+ {02/ Bitr Z s 2l — my P Da/ b+ 0,467

where U;=btzT,(J+T)™ as before. Using the independence be-

tween T, and Z;, under the null hypothesis, the characteristic

function of Uy is given by

(10.14)  +slt) = BlenplitUn [1—Str 21 Z5 0 ToI+ 1))

+it(pa/BteZ o Bla— ity Papo/b+0, (b7 1}
= {8} —t{p2/B) ElexplitUsiUsI+o,(67)

= alt) = H(04/B) —oalt) 0, (67

where a(t)=E[expl(itUs)] and E(Z1.2%)=p:l. was used. On the
Sther hand since the characteristic function of G4(z) is (1—23tyr72,

the expression (10.12) implies



FY e 1 _oiFra
S~

o1 — gt Sl (1—2ig) ] + o)

Aalt) = (128272 +

Therefore

—t{ps/Brprelt) = (5o f/20)(—2it)(1—2it) 7% + 0BT
(. B (L2t — (12t ] o o7

Substituting these into (10.14) and inverting it vields the desired

result.

i, Monotonicity of the LRT and LBI Test.

11.1. Monotonicity of the LRT. In the MANOVA problem, ﬁrn
st, Lawley-

monotone property of the power functions of Roy's te
Hotelling's test and the LRT, which corresponds to those KX a
are shown by Das

and 4, defined in Section 7 in our problem,

Gupta, Anderson and Mudbolkar (1964) based on Lemma 7.1 in

Chapter 2. However the monotonicity of the power function of

Pillai’s test evea in the MANOVA problem remains unsolved,
though Perlman (1978) proved itin the case that the critical point
k; is less than 1 or the significance level is large. This implies

that the monotonicity of the power function of the LBI test in our

problem is barder to establish.

In the GMANOVA problem,
nicity of the conditional power functions of Roy's test A's, Lawley-
and the LRT X. given T, while Fujikoshi
Here using the results in the

Khatri (1966) proved the monoto-

Hotelling's test Ko
(1973) proved it unconditionally.
MANOVA problem we chall see it ina similar way asin Fujikoshi

(1973). Ta Section 4, it has been seen that a reduced version of our

model is given by
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X deﬁﬁ. H._u —~ ZQHITHJNH1:u®Huv
Vizs ~ ﬂ\u_ﬁhuwhq

N.E@MN».&V“

(1L.71)

#g—P3)

where (x, T, and Vs are independent and the marginal distri-

bution of T:

does not depend on unkrown parameters. Since the

power function of a G-invariant test is a function of the characte-

ristic roots 8, >...=8,, =0 of =024

., as far as the power function

is concerned, we can assume without joss of generality that T'=
Qmm.m_“m.d...vmﬂ.wu: M..uu.au.u. m..._u.nw. ®uu“hwwm.mm?\.muu:.v)\mxpw - “‘_S.Xﬁu‘ ‘PH_.&,

problem of testing 9,,=0 versus G, +0 in the conditional

since the
model is exactly the same as the MANOVA problem, it follows

that the conditional power function of 2 G-invariant test based on

T, =xVzx alone is a function of the characteristic roots Dir.,T
=diag{d{TT) = -.- >d, (T, T)=0} of

(1. 2) H{T,T) = ([+T) 2 (I+Te) ™

(see, e.g., Anderson (1958)). Here it is easily seen from (11.2)
that D(To, 1) —D(T%7T 1) is nonnegative definite whenever T'1—1:
S>3 for all 4 Therefore if the

of a G-invariant test ¢ based

is nonnegative definite or

conditional power function (¢, D | Tx)

on T. alone is increasing in 4T, ) for each 7, then

26, D(To,T3) | To) = migp, DITwT 2 T (a.eT)

if 50 28f for all i. Taking the expectation with respect to T3 yields

the unconditional monotonicity of the power function of ¢ or i, Ty

>nz{$,X:). This implies that the tests &7, X, and X, are of mono-

. tonieity. property in power because they enjoy the conditional

monotonicity we summarize these as

Proposition 11.1. If the power funetion of a F-invariant test ¢

based on T alone has the conditional monotonicity in 4T, it

is monotonically increasing in each & In particular, the power

135




functions of the tests H'y, &2 and X are increasing in each 8; so
that the tests are unbiased, and the power fupction. of Pillai’s X's

is increasing in & if the cut-off point By is less than 1.

The last statement follows from the former part and Perlamn
(1973}
11.2. Monotonicity of the LBI test. As has been remarked, itis
difficult to prove the monotonicity properiy for the LBI test.
Following the same argument as in Perlman (1973), Kariya (1975)
obtained the following result though the proof is omitted.

Proposition 11.2. If the significant point E; of the LBI test ¢s with

critical region
agte(I+ T Tl I+ Tt — tel+ T2 > ks

satisfes —m<k<—m+1, the power function (s, c8) Increases
monotonically in ¢ for each fixed $={8,....5,) Wwhere ay= (7t 73—

24)/P; and =0 Hence under the condition, the L8] test is unbiased.

However the condition — kg€ —n,+1 implies large values of

significance level and so it will not be practical.

12. Admissibility and Robustness

12.1. Marden’s result. Using the same arguments as in Marden
and Perlman (1980), the admissibility of the tests in the GMANOVA
problem was studied by Marden (1980, 1983} where Wald's result
is used that the set of proper Bayes tests and their weak* limits
forms an essentially complete class. To state his result (1980}, let
Ty = (I+ TV I+ T I+ TV~ 1
.ﬂ\-uu .q‘uu -
GN. Hu = ﬁN u.u.N Zv A.N u»uN Huu..u
.quu .ﬁ\.ww -
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§ = I+ T I+ T T I+ T ™I+ T) ™2 and

B = I+ T T+ Te) "

It is noted that

(12.2) 0< R<I raok(R)=g,
0c § <1 rank(§=t, 0<I-R+8<1I

where g=min(p,+psn), t=minln,ps), and A>E {A>B) means
A—B is positive (semi-) definite. Since (T3,T3) is homeomorphic
to (§, B), any G-invariant test is a function of (§,R), upon which
€ acts by (S, Ry—('8r-, I'RI") where I'E0(n;). Here our problem
is to test §=0 versus 50 based on (S,R), where $=(85,...,8,,) and

§: is the i-th largest characteristic root of ¥=0,55,0, For each

T, or R, choose I'pE0(m;) continuously such that
(12.3) B =R = diag{ry,era)
where #; is the i-th largest characteristic root of B, and let
(12.4) S=IS%, r={ry...ry and
(12.5) B = fgeRIla=(a), 1>a>> ... >a >0}
Then & ae. (ZiZn V) where V=(72 72).
Definition 12.1. A set EC®7 is said to be nomincreasing with
respect to weak submajorization {abbreviated as w-nonincreasing) if
(12.6) reE, r'e®® and r'<_r implies r'EE,
where <., is the partial ordering with %° given by
rear # orge, rtrgntr, o TS

and r'<,r means (12.6) with the jnequalities strict (see Marshall
and Olkin (1979)}.
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Define the class & to consist of all closed (in &9, convex and w-

nonincreasing subsets of 27, and let
7 = ($cR=|8=(), 8:=... >3,.20],
(12.7)
¥, = (e|d@)<1} and ¥,={8cy|4@E)=1}
where 4=4{8)=772.5; Further for any finite measure w° on ¥, and

Jocally finite measure on =* on ¥, define

(12.8) d(Z 10210,V : 2%7%) bz?lu\aaémi | Re(da).

where the local finiteness of =' means that =* (A)<Coeo for any
compact set A of ¥, Here R; is equal to Rgin (8.6) with £ replaced

by

AHN. @u ma = m.mm.w.m.(\mu«..;)\maﬂw : HS.X;._VN.

In fact, Re=Ry, because of the invariance of v, and Ap in (8.6)

under E-PEQ with (P, @€00m) x 0(f2).
Now denote by JB the class of G-invariant tests ¢ of the form

if r&E
if nﬁNS.N»?ﬁ;‘vu ') > a.e ﬁ.N:_thu.ﬂJ
otherwise

1
{12.10) ¢z 1

0
where EE8, |¢| <o, and for r&E®(=interior of E}, EANH&N:,«M."

207} | <oo. Then we obtain

Theorem 12.1. (Marden (1980 or 1983)) All tests in & are admissible
among F-invariant tests.

of invariant tests.

It is noted that the LBI test &' is admissible in &, the class of
G-invariant tests,
0. But by taking point mass at 3=0 as n®

admissibility alse follows from the unique Bayes-ness.
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T p,=n, B is the minimal complete class

because it is a unigue best test in & around &=
and =0 1in (12.8), the

Next to consider the admissibility of F-invariant tests based on

T, alone, let

1 if OWQ.CHﬁnwwﬁm.mr..._o?ﬁ.mzmkﬁ

(12,13 ®

0 otherwise

where chy(T,) denotes the i-th largest characteristic root of T, and
AC#® is decreasing in the sense that a={m)EA4, a*={z¥)eR* and
af<a; for all i imply a*€A. The LRT %, Roy’s test &7, Lawley-
Hotelling's test %, and Pillai’s test &y are all of this form.

Theorem 12.2. (1) {Marder and Peslman (1980)) Let n,=1, A size
@ test ¢ of the form (12.11) is admissible among F-invariant tests
if and only if ¢<a¥®, where a¥=Pl({1+n—ps) T/ P:>1).

{(2) (Marden (1983)) Let m>>1 No nontrivial test of the form(3. 1)

is not in B. Hence if p,=n.>>1, any suck test is inadmissible.

The result (2) implies that all the tests Hls {i=1,...,4) are
inadmissible when p.z#n>>1.

12.9. Robustness. In the framework described in Section 9 of
Chapter 2, the robustness of the tests in the GMANOCVA. problem
was studied by Kariya (1981) and Kariya and Sinha (1984). Recall
that (M) denotes the class of nXp dimmensional left G{xn)-invariant
distributions about MER™ such that P{&)=1 for P (M) and
F (M, I,®Z) denotes the class of nxp dimmensional elliptically
symmetric distributions about M with scale matrix ZEd4.(p) such
that P(Z)=1 for PEFz(M, [.®Z), where X={X:nxp| rank(X)=
#}. Clearly

FelM, LRI CF (M) for all M:nxp and PP M)

if PeF (M, [,®Z) has a density, it is expressed as

(12.12) FXIME) = |Z|qltr2(X— M) (X—M)) (XeX)
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where g : [0,00}—[0,00), while i PEF.(M) has a density, it is

expressed as
(12.13) FIX\M) = o((X—M) (X—M))
where g : S4+{)—[0,0}. Of course, FelM, I@Z) contains N(M, LRI

Theorem 12.3. (1) The LBI test, the LRT, Roy's test, Lawley-
Hotelling’s test and Pillai’s test are null robust or their aull
distributions remain the same for all P=U (7500110 is of the form
(2.6)}. o
(2) (Kariya and Sinha (1984)) The LBI test under normality is
otill LBI in the class of distributions whose densities are of the
form (12.12) and satisfy

.ﬁ itr 447270 (rAd") | pldA) < oo (i=1,2,3)

A

7{z)<0 and g™ is nondecreasing,

éﬁwnw g¥(x) =d'glx)/d=’, T is the marginal density of AN"em;,
NuuuNuanuL under @wuuo and .M.“Hu .&”ﬁkﬁﬁﬁrﬁéu H.u.w.nws..w_‘h.m

Gl{p,+ps), A=0}, and 4 is an invariant measure on A,

Proof. (1) follows from Corollary 9.1 in Chapter 2. In fact, the
conditions (i)’ and (i)' are easily checked since our group ¥
contains as a subgroup FU(p} acting on Z by Z—ZC' whese
CegUip) and FU(p) denotes the group of pxp nonsingular upper

triangular matrices. The proof of (2) is omitted here.

Chapter 4

EXTENDED GMANOVA PROBLEMS

1. Introduction

1.1. Summary. In Chapter 1, a GMANOVA model with general
linear restrictions on the coefficient matrix was called an extended
GMANOVA model and the problem of testing a2 general linear
restriction in an extended GMANOVA model was called an ex-
tended GMANOVA problem. A typical example of an extended
GMANOVA model is an SUR model (see Section 1 of Chapter 1)
and so the problem of testing on the coefficient vector of, say, the
first equation in the SUR model is an extended GMANOVA problem.
Other examples are also found in Section 1 of Chapter 1. In this
Chapter, we concern some extended GMANOVA problems.

In Section 2, a systematic approach to an extended GMANOVA
problem is taken under an assumption on the general linear re-
strictions and regression matrices. This assumption makes it
possible to have a similar canonical form as we obtained in
Chapter 3 for the GMANOVA problem, so that a group of a
similar form as in the GMANOVA problem leaves the canonical
form invariant. In fact, Banken (1984) gave an LBI (locally best

invariant) test in the canonical form by using 2 correspondence
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between the extended GMANOVA prbbler and the GMANOVA
problem. while the LRT (likelihood ratio test) had been derived in
the caponical form by Gleser and Olkin (1970). Some examples
listed in Chapter 1 which satisfy the assumption required are treated
and the LBI tests are given.

Tn Section 3, a problem of testing on means with incomplete
data is shown to be an extended GMANOVA problem and the
problem is treated from our point of view, though it can be
hapdled in a usual way. In this case, the assumption made in
Section 2 is not satisfied but a UMPI {uniformly most powerful
invariant) test exists.

In Section 4, in a two equation SUR model we treat the problem

of testing the hypothesis that a part of the coefficient vector of

the first equation is zero. Of course, if we ignore the second
equation which is correlated with the first equatiom, the usual F-
test is UMPI as is well known. But taking into account the second
equation, no LBI test in general exists, much less UMPT test. Hence
the F-test is no longer UMPI in the SUR model. However, in a
particular case that the regression matrix of the first equation is a
submatrix of that of the second equation, it is shown to be UMPL
A reduction of the problem toa canonical form is made independ-
ently of the way adopted in Section 2 because the assumption made
in Section 2 is not satisfied.

In Section'5, the GMANOVA problem is treated under some
covariance structure. Hence it is not an extended GMANOVA
problem, but the argument is rather similar to the arguments in

this chapter. First, under intra-class covariance structure, the LRT

{likelithood ratio test) is shown to be UMPI if a condition on the -

regression matrix is catisfied and an example in Chapter 1 is

analyzed. Second, under Rag’s covariance structure, a GMANOVA
problem is shown to be 2 MANOVA. problem. Finally, in the
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2 of Chapter 3 where
the covariance matrix is of certain structure, the GMANOVA
problem there is also shown to be a MANOVA problem.

growth curve model treated in Example 1.

2. An extended GMANOVA Problem.

2 1. Canonical form. In this section, we shall treat the extended

GMANOVA problem described in Section 2 of Chapter 1. Let

2.1) Y= X.BX;, + E, E ~ N{0,IL&XI)

,w.w 2 GMANOVA model where X; is an nxk matrix of rank %
and X, is a gXp matrix of rank g. In the extended GMANOVA

problem, it is assumed that the following prior information is

available on the coeflicient B:

(2.2 XBX, = X%,

where X is an myX % known matrix of rank m; and &, is a gxry

known matrix of rank r,. And the problem is to test the hypothesis

2.2 H: XBX. =X,

where X, is an msXk known matrix of rank m; and X; is a gX7%

known matrix of rank e Without loss of generality, we may
assume X,=0 and X,=0. Since a general treatment of the problem
(2.3) under the restriction (2.2) is difficult, we here make a

crucial assumption for the analysis below.

Assumption 2.1. The matrices X;, X, X, and X, satisfy

gugm”ya&-mgu and E;Em“gmgﬁ

where

(X X)X XXX X (X E) ™ (i=3,5) and
(X)X XHGLX) X XXX (7=4,6)

M;
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This assumption implies that there exists an orthogonal matrix
which diagonalizes M; and M. simultaneously (i=3,4). Banken
(1984) associated this kind of assumption with the estimability of
(2.2} and (2.3) though his assumption is slightly different.

Now to derive a canonical form of the problem, we simply deal
with the cases (I) MyM,=M; and M. M=M., (D M,M;=M; and
MM,=0, (1) MM,=M, and MM=M, and (IV) M. M;=0 and
M. M,=M, A more general case is dealt with in a similar manner

and in fact briefly treated later.

Case (1) : M;M;=M; and M M.=M, This assumption means that
the row space of XH{XiX))™/* is included in the row space of
X, X{X)"Y* and the column space of (X,X5*2X, is included in
the column space of (X X7 "X, In other words, X; and X, are
respectively nested to X; and X relative to (X{X)™ and (XX0)7
Clearly mp<m; and r,<r are .HBHE.,&- Let

I,

@. 4 X, =P . F, Pson), F.e3lk

Nn = .m._uﬁNn OMHUNa .mq“m%mhﬂvu wnmamrvv
Then, as has heen observed in Section 2 of Chapter 3,
YR B* 0

{2.58) Y#=P Y Pi= ~ N{ , L&
Y¥/n—k o 0

where B*=F,BF. and 9*=PiJP, From
X:BX,, = XFTBYF7' X (i=3,5)

Under the assumption, there exist F,E0(k, Q.=0(q), FLeBlim;

and Hﬂ...fwm%mhﬁ-#pu ?.“mv mw such that

k—m, ma—m

XD =F0,L, 00 XFi=F( 0, 0 ILJ)P -~
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(2.6) 0 0
FrX,=Q| |F, F7X,=Q,| |F
h.. h.-

Here letting @=P,B*Q,, from (2.5) and (2.6)

P, 0 0
(2.7) z={" w*oa ~ ﬁe ¢ L&)
0 I/ \o I 0o of 7

Define

P P2 P P
o © @ Bz O Oy
{2.8) &= =[Gz Oy Oy 07,

00 0y @, 033 02,
: ¢ 0 0 0/n

W =f— =
here m=k—m,, n,=m,—m;, ny==m; and #,=n—k so that Eni=n,

and bi=g—ry, D=vr,, Pa=re—ry and Pi=p—g 50 that .va-.”mv. Then
from (2.6) the prior restriction (2,2) becomes

AN. WV @uu ={¢ and @uu =0

and the hypothesis (2.3) becomes H': @5, =0 and &y,=0. Hence from
(2.9), we test

(2.10) H:0,=0

Case (II) : MoM,=M, and M M;=0. Then in a similar way as in
.Ew case (I}, there exists P,=@(k) and 2,=0(g) such that (2.86)
holds with F7 mﬂﬂ@%&ﬁa replaced by

0 g—Trs—7¢
F7X=Q,GF;, with G=|I|r,
O ko)

In this case, we also obtain (2.7) and (2. 8) where n/s are the

ame as before, but pr=g—r,~r;, p,=r,, ps=r; and py=p—qg. And
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the prior restriction (2.2) remains unchanged as in (2.9) but the

hypothesis (2.3) simply becomes

{(2.10) H:0;,=0
Therefore in the both cases the hypothesis to be tested is the
hypothesis H in (2. 10) in the model 2.7) with (2.8 and (2.9).
Gieser and Olkin (1870) directly extended the canonical form of the
GMANOVA problem to this canonical form (not via (2.2) and
(2.3)) and derived the LRT (likelihood ratio test)

ey
ez (00
43 44, U
2.11) v zs,

|L+(Z0ZuZsd| Ve Vi V| |25 _
Ve Vo Vul \Z4

where n—k=p is assumed and

p1 Pz Pa Pu

Z Z.. Z 13 Z 14\ 1y
—= Zay Lo Z 3 Z 30 \1y

Z s AN Z 3 g |75

Z Z 4 Zau Zal s

V=(Vi)=(ZLZ.;) : pXP (£, 7=1,..004)

(2.12) Z

2.9. Reduction via invariance and LBI test. Following Banken

(1984), let
¢ 0
P=1{Q=] .. 1@ E0(m), i=1,...4]
0 Q.
(2.13) A= [A={A)EFUP A2 P X Pp
A;;=0 for i>j, i, =LA}
and

¥ = (F=(Fy) : nXp\Fys t mexp;, Fyy=0 for i+i=h, k=5 ...8}.
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Then the group $=PxXAXTF leaves the problem invariant under

the action
glZY=PZA' +F and g6, 5 = (PGA'+F, AZA")

where g=(P,4,Fic¥. Then as has been shown in the case of the
GMANOVA problem, it is shown that the group is maximal in
the general affine linear group of homomorphisms leaving the

problem invariant {see Section 3 of Chapter 2). Define the subgroup
of §

(2.14) # = {g=F|g=(P,AF), P=I} = (I} RAXTF

The following lerma is similar to Lemma 2.1.

Lemma 2.1. (1) A maximal invariant statistic under £ is S=
(S1,8:.8) with

Ve Voo V™!

8;=s,(Z) = AN‘S_NQEN«L Vie Ve Vau nNuu.NueNub..
Vi Vio Vi
Z 23 Za\f Ve Va\ ™ Z oy Z2i\

MMHM&NV = d
T Za)\Veo Vi) 2w Zod

Z,, Z
Si=8:(2) = | Z VA £l
Nu& N%&

(2) A maximal invariant parameter under X is ¥'=04,551.0% with

s Zu\ M Es

{2.15) Zopau=Z0— (Zu o) .
Za Ful Pu

Here define

Ty=4(Z)=x V!

(2.16)
T,=t(Z)={0,1,,)8:00,1..)’




where

Vo V] \
(2.17 y.."ﬁ...THSIE»ﬁN.SIANuE Z ) ﬁ.ﬂ.uu. V']
ﬁ\\ku .ﬁ\&#
and Vi is defined in the same way as .5 Then analogous to
Lemma 4. 2 of Section 4 in Chapter 3, we obtain

Theorem 2.1. (1) The statisic T=(Ty,T:) is sufficient for the

family of distributions of S.
Qwv Ooﬂn.._.mﬂmOﬁmH on m..»u x -~ zﬁﬁHu_nH..uvlﬂ...u@uE H®Mw~.ub.

Under this theorem, the rest of the argument is completely
similar to those of the GMANOVA problem. In particular, 2 §-

invariant test is described as a ¥-invariant test satisfying
(2.18) $(t(02), 1igZ)) = $(Pt:(Z)P5, Pt Z)P3)

for g€% and Pae0{n,), and the LRT in (2.11) is written as
(2.19) | I+T,| >¢

and the LBI test is given by
20 We= U T BT+ T —pd) > ¢

where b=nyt-n—P:—Ps
To obtain the null distribution of Wi, let

(2.21)  Us= Wi+ napa — mapulpat2a/b
Then the null distribution of U; is by Theorem 10.1 in Chapter 3

given by

(2.22) P(Uss2) = Gla) + LI-L—G ) +2G resl) =G pual)]

+f @%3 (G flz)—G pealz)] + O,

where f=nyps, Y=#+p:+1 and G lx} denotes the y*-distribution
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function with degrees of freedom f.

We first remark that when n;=1 in the above cases (I} and (II},
the test with critical region Ti:>¢ is equivalent to the LRT and it
is UMPI (uniformly most powerful invariant) in the class of con-
ditional level & tests {given T). Further {1-+-n—p—pa—p)T/D. is
distributed as Flpy, 14+7m.—pa—ps—204 1 M) with A=7/2{1+T,), where
Flo,8 : ») denotes F-distribution with degrees of freedom « and @
and noncentral parameter . This result is parallel to the result in
Section 7 of Chapter 3. An example of the case »;=1 is found in
Example 2.2 below. Secondly, ir Section 7 of Chapter 3, it is
observed that the GMANOVA problem with X;=1, is essentially
the MANOVA. problem even if rank (X)=r.<g=p. However, in
the extended GMANOVA problem, this is not the case. This is
because in the latter problem, the prior information @3;=0 is
available (see the cases (I) and (II)). Hence in the case p.=1, the
LRT is no longer UMPI, which is in contrast to the GMANOVA
case with p,=1. Thirdly, the local minimaxity of the LBI test also
follows from Theorem 9.1 in Chapter 3.

Case (III) M;M,=M, and M, M,=M, This case is parallel to the

case (I) and in the same way as before, the prior restriction {2.2)
becomes in (2. 8)

mN. va @uu =0 and @uu =0

and the hypothesis (2.3) becomes @,,=0 and ©3u=0 or

(2. 24}

H:0,,=40

where n.=k—mts, Hy=M5—M, Ne=My, T=n—Fk DHL1=¢—7T4y Pr=Te
Pe=ri—7s and pi=p—g. Hence in this case, the problem is to test
(2.24) in the model (2.7) with (2.8) and (2.23}, Or from an
invariance point of view, it is equivalent to the problem of testing

@,;=0 in the reduced model
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@»u O -

2% - ..
HH@.MV.‘ M\.”.i ﬁ.M..-..L ﬁﬁu ”Nu “.wn Pu

Nnu Nuu Nu#
T~ N )
Nun Nuu Nu# O O o

where Z ..QUA‘W....U (i=2,3,4) and Z;s ave given in (2.12). This is
4 reduced form of the GMANOVA. problem treated in Chapter 3.

Case (IV) M,M;=0 and M M,=M, This case is parallel to the
case (II), and the prior restriction {2.2) becomes @, =0 and Oy,=
and the hypothesis becomes @,;=0, whexe ny=hmmg—s, M2 =Me
ng=nty, M=n—k HL=ETe Pr=Te Pa=T4Ts and p,=p—g. Hence
this case is equivalent 1o the case (IIT}).

It is noted that in the case of M,M,=M, and MM.=M,, the

prior restriction (2.2) contains the hypothesis (2. 3) so that no

testing problem occurs.

9.3. Ezamples. The following example is 2 repetition and con-

tinuation of Example 1.5 in Chapter 1.

(Banken (1984)). In a biological investigation the
growth of young rats

Example 2.1.
effects of thyroxin and thiouracil on the
were studied. For this purpose. 27 rats were randomly assigned to
10 to the first and third groups and 7 to the second

three groups;
ot as a control, while the second and

group. The first group was ke
given thyroxin and thicuracil respectively. The
weight of each apimal was measured at the beginning of the
d ther in four consecutive weeks, The data can be
be the weight of the jth individual
4, =107 and i=1,2,3 with 7

the third were

experiment an
found in Box (1950). Let Zi
in the tth week, where t=0,...s
=10, n,=T, aand n,=10. The vectors H_.M.HA.ﬂc.e::Has% are assumed

to be independently normally distributed
£y ~ Np,Z) (mER% e, (5)

where t..uﬁtn.s...ystf and ?_.hua_.o.._.ﬁan.m..ﬁunn ?Hot.;&. -
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As the rats were randomly assigned, the expected weight of the

rats should be equal at the beginning of the experiment:

{2.29)

1= Qg9 = daq-

And we want to test if the expected growth curves are egual, i.e.,

(2.26) Hipi=ps=p or ay=azp=ay (/=01 2}

Example 1.5 in Chapter 1 shows that the model is written as

Y= X.BX,+ E, E~ N{Q, L:®2),

where B :3x3, the prior knowledge (2.25) is written as XBX,=0
with

1 0-1 1
X,= and X,=[0
0 1-1 0

and the hypothesis (2.24) is written as X;BX,=0 with X=X, and
X,=I Therefore, ciearly the Assumption in the Case (I) is fulfilled.
In this case, m=1, n,=0, #;=2, zs=24, £,=0, p.=2, ps=1 and

$,=2, and the values of T; and T: in (2.16) is computed as

1.484880 0. 535907

T.=
0.535907 0.315512
0.0120777 0.0360276

m,-..u”
0. 0360276 0.0364151

Ranken (1984) reported that the hypothesis is rejected at level 19

when the LRT, Lawley-Hotelling's trace test or Roy’s maximum

trace test are used, and that the LBI test also refected the hypo-

thesis at 1% level where the null distribution of the LBL test is
simulated with 1,000 random samples. One may use the asymptotic

null distribution up to order n~* of the LBI test statistic Us in
(2.22), Usis computed as U;=17.61 for this data and so from
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f=4 and r=5
—0, 0019586+ (0. 0018903)

(2.22) with b=23,

P{U<1T)

where the tables in Abramowitz and Stegun (1875) are used for
x2-distribution. Though the negative value of P(Us<17) up to order

! is not necessarily appropriate, the result will support Banken’s

experiment as Ob-%)=0(0.0018903).

{See Examples 1.4 and 1.5 in Chapter 1} Let x;=
%1 be random sample

Example 2.2.
(s, X+ (p+a) X1 and y;={yin va) (p+al
from Ni(p,E) and Nig,Z) respectively [i=1,...7; F=1,...m), where

p=(phs pa) With pa: gx1 and g=(gi, 42 with st gx1. Here let
H\..“ ﬁhﬁwun..ukuum\nu...uﬁau B A‘ﬁ +QV x Aﬁ.l—lﬁavu
E-. Bz

e; 0O

0 e

X,= : (n+m)x2 and B= 12x{p+q

7

!
m 72
Then the model is expressed as

(2.27) Y=X,B+E, E~NQG L®3)

Assume that we know pz=1. OT
0
(2.28) X,BX.=0 with X,= (1, —1) :1x2 and Xi= I : (pt+gXg

4

Under this condition, we wish to test
I
AN. N@u ‘Ntm.mw.Nm”O dq.wﬂu \Nm" ﬁHu ]Hu : HXN &.H.__.nw N‘ml‘l 0 H Svt_lﬂv X%-

As has been stated in Section 1 of Chapter 1, this is the problem
treated by
Kanazawa (1978) etc., in association with discriminant analysis with
covariates, and the above formulation shows that the problem is
pot 2 GMANOVA. problem but an extended GMANOVA problem.
Further it is easy to see that the Assumption in the Case (II) is
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Cochran and Bliss (1948), Rao (1949), Kariya and -

satisfied, since M,;=M; holds from X=X and M, M;=0 holds from
X,=I Hence the test based on W; in (2.20) is LBL As has been
remarked, though X,=I, there exists no UMPI test even when
ns=1 or p,=1. The LRT is conditional UMPI when n;=1.

The admissiblity of the tests in this problem is studied by Marden
and Perlman (1980), and it is shown that the LRT is not admissible
if the significance level is large and that the test based on the

studentization of an efficient estimator is inadmissible.

9 4. General case. In 2.2 above, four special cases in which
Assumption 2.1 is satisfied were treated. Even for a generzal case,
the procedure of the reduction is similar. In fact, by Assumption

2.1, in place of (2.6) there exist P,&ClE) and @,=6{q such that

k—s ms s—mig

X Fi = F0,L P, XFU=F(0 I 0 )R ,
0 O\g—t
FiX,=Q)| |F, FrX,=QHF, with H=|I|r,
L, 0/t—rg

These expressions lead to the following decomposition of O

P P2 P P Ps
@n (C ®r.w Qﬁ Oy 72,
@nu Quu By Oy 0\
(2.30) 0=[{0,;6,;0 0 0l
@ﬁ. @pu 0 O O /7
0 0 0 0 0O/n

and the model is Z~N(6,I,®F). Here the prior restriction (2.2)
is eguivalent to ©;;=0 ({,7=3.4), which is incorporated in o,

while the hypothesis (2.3) is equivalent to

H: 0.,=0, 0,,=0, 0;,=0 and @3,=0,



=k, Ry=S—My, A=Wyt Ms—S5, RSN, n=n—Fk
pr=q—t, pa=try, PyFratre—i, PSETTS Ps=p—q.

If mior 2,50, set it to be zero. The above four cases we have
treated correspond to the situation Sﬁnnn either s=m, or s=m; and
either t=r, or 7g which is equivalent to the situation where s<
maxi(ms,ms) and t<max (r,re. Hence the situation we have not
treated is the one where s>>max{m,,ms) and/or t>max(ri,re)-. These

cases are left out here because of the difficulty.

3. Testing on Means With Incomplete Data.

3.1. Problem. In this section, we shall transform the problem of
testing on means of normal population with missing date into
the extended GMANOVA problem treated in Sectien 2. The model

considered here is

(3.1) Z ~ Nie.w', LOZ)
.—M\u -~ ZAN:S_FMV Niu@Munu

where Z : nxp and W, m.Xp, are independent, e;=(1,...,1)ER,
pitp.=p and p=(pl,p)" 1 pX1 with ps: poX1. Under this model,

the following problem is considered;
(8.2) H: pp=0 versus K1 p#0

Under the imodel (3.1), we have = p-dimmensional observation
vectors which are randome samples from N,{(x, %) and m. po-dimmen-
sional observation vectors which are random samples from N{gs,Z2)

In the last decade, methods for statistical inference with missing
or extra data have been extensively investigated. The articles by
Hartly and Hocking (1971), and Kariya, Krishnaiah and Rao
{1983) provide overviews of the subject and extensive bibliographies

(see also Section 2 of Chapter 5. Most methods are however
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proposed by intuitive or ad hoc approackes and not much attention
is paid to their optimal properties. Some common features of previous
work in this field are as follows: (1) normal models are assumed,
(%) some simple patterns for missing or extra data are assumed
and {3) repeated samples from a specific pattern are assumed.
For the problem (3.2) under consideration, Bhargava (1962, 1975)
derived the LRT (likelibood ratio test) and Eaton and Kariya
(1983) showed that it is UMPL In this section, we show that the
problem is 2 particular case of the extended GMANOVA. problem
and the same result is obtained. Incidentally, for the problem of
testing =0 in the model (3.1}, Bhargava (1975 derived the LRT,
and Morrison and Bhoj (1973) investigated the behavior of the
power of the LRT numerically. In Cohen (1977), it is shown that
in the case of py=py=1, Hotelling’s T’-test ignoring the extra
data W, is admissible, while in Eaton and Kariya (1983) it is
chown that there exists mo LBI (locally best invariant) test. In
addition, for the problem of testing =0 in the model (3.1), it is
shown in Eaton and Kariya (1983) that there exists no LEBI test,
contrary to the problem (3. Nv..Hu. the case of p,=p,=1, Khatri,
Bhargava and Shah (1974), Little (1976) and Sarkar (1979) treated
the problem. Qur purpose here is to treat the problem (3.2) in
association with the extended GMANOVA problem.
Now to incorporate this problem into the framework of an extended
GMANOVA problem, let PE0{n) and QE0(m,) such that Pe,=
(v/7,0,...,0) and Qe,,={nm350,..,0), and define

N:. Nuu 1 ar.n.sw uwr.utm

0 0

, LE@Z)




- .3\15 1 Q&G.EN
ﬁw Pu ﬁﬂ\u = @aﬁu = ~ .zﬁ » .Naaw@Munv..
g SNIH 0

An idea is to introduce a dummy random matrix Wi whose ele-
ments represent missing variables on the first p, coordinates or the
counter part of W, as follows:

WE W n my b

(3.5) (WY, W) = ~ NI , LOZ)
WE W 4 0

where 5 py X1 and 42 (m.—1) X, Note that # and 4 are taken to

be independent of g. Then

Yi Y\l Zy Zy By By
(3.6) ¥= Yo Yo |l o Wk W ~ N B B , L niR3)
Yu Mwuu §H|H .S\mm ﬁﬁu WE B
Yu Yooy n—1 2y Z 0 0
Py P2
where

B=nt, .m.u.uﬂﬁtut.m“ By=7'
Bon=m¥'st, Bnp=4 and  Bp=0.

That is, using the dummy matzix WY, the model (3.1) is formalized

as
(3.7 Y=XB+E with E~ N, Toim, R E)
where
..Nu 1 .wHH ‘NHM
X = ! : TleﬁbX?ﬁ.nuTHv and B =|Bgy Bxn|: mat1)Xp.
0 By Ba

Further, the prior information : B,.=cB,; and By=0 with c={ma/

#)¥* is also formalized as
hm. mu .NWN.N.._. =0 -
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where

—c 10 0
3.9 X= T X (my+1l) and Xi=
001, Loz

And the hypothesis H: u,=0 in (3.2) is expressed as
(3.10) X;BX;=0 with X;=(0,1,0) : 1x(1+m,) and Xe=X,,

Thus, it truns out that the introduction of the dummy matrix Wi
enables us to put the problem in the framework of an extended
GMANOVA problem. But the dummy variable is eventually by

invariance deleted as will be seen below.

3.2. Testing (3.10). In the above, it is shown that the problem
of testing #,=0 is a special case of the extended GMANOVA
problem treated in Section 2. However, the Assumption 2.1 that
enables the extended GMANOVA problem to correspond to the
GMANOVA. problem does not hold because MM;+MM,, whete
in the present case M;=X{X, X} X! (i=3,5) because of the form
of X;. Hence the result in Section 2 is not applicable here. To
directly analyze the wnovwnﬂm (3.10) under the restriction (3,9}, let

a —ca 0
1) P=|ca @ 0 |ilmtlxim+l, (e=gigz)
0 0 Lnu

Ther P<0O{m.+1) and from (3.8) and (3.9)
010y /O (o

(3.12) 0=X,BX, = X;PP'BX, = 2] =

00rf/ \I @y,

where

0y O, a(By+cBy) alBi+cBy)
(3.13) @@= G, 0, al—ecBy+By) 0 =FP'B
@E. Quu wuu 0 .

|




Note that @y, does not depend on the dummy parameters 4 and 4.

Now letting Q.ﬂAo ' %v Y, the model (3.7 éwmﬁ@.wvvoooﬁmm

&

3.14) U= (U ~ Nl of I®2 with 0n=0 and @;,=0,
where Uj;t miXp; (i1t 1 §=1,2) with my=n,=1, ng=my—1 and
ni=n—1. On the other hand, the hypothesis (3.10) becomes

0= X.BX. = X,PBX; = (ca,a,0/0X: = caBy,
because @,=0 from (3.12). Consequently the problem is now to
test ‘
.m.. @u» =0
under the model (3.14) and it is slightly different from the
GMANOVA problem in Chapter 8 and the extended GMANOVA

problem in Section 2. But applying the invariance priaciple, the
problem is reduced to ‘he MANOVA problem. In fact, under the

translation group
¥ = (F=(F., 0) : (noma) X p| Fi=(Fi, Flz, F3,0), Fy: (mmat X P1)
acting on U by T— I+ F for FEF, the model (3.14) is reduced to
U= (Ul Uh, Ui, Uld)’ ~ N{(05,0,01,0), Lorrna®@Z)

and there the problem of testing @.=0 is a special case of the
MANOVA problem. Hence noting =1, the following result is
well known (see Section 7 of Chapter 3).

Theorem 3.1. The test with critical region

(3.15) T = UpUbUn+ UkUs+ Us Un) UL >¢

is uniformly most powerful invariant (UMP]) for testing 0..=0"
under the model (3.14). The aull distribution of (m+m—=1T 1s
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F(l,n+m,—1), i.e., F-distribution with degrees of freedom 1 and

ntme—1.

Tt is remarked that the test (3.15) is the LRT under the model
(3.14) and that the group here leaving the problem invariant is
G Gl(p) % Flip) X F acting on U by U—~UQ+F with @=(§ &)
where (@, Q,, FIEZ.

In Eaton and Kariya (1983), the result is directly shown based
on the original model (3.1). In the original term of (3.1), the
test (3.15) is expressed as

T = (2 ) a2y ) Bamem @imem)

+8;+ Voo HEat+eids),

where c=(m:/n)"?, elZ /n=13,, 2, with Z:71Xps avuﬁmﬁ\ﬁu"&s

8= Wi I—en eh/m:1W; 2nd V=2 I-e.ei/n1Z=( " V) with
1 2.

Vot P2 X Pa

4. Testing on Regression Coefficients in a
Two equations SUR Model

4.1. Problem. In Section 1 of Chapter 1, it is observed that an
SUR (seemingly unrelated regression) model is regarded as an
extended GMANOVA model. In this section, we treat 3 problem
of testing on the regression coefficients in a two equations SUR
model, which is an Gﬂmwmo& GMANOVA. problem. Let

1) yio=XBu+8 EE) =0 E@e)=osl =12

o

be an SUR model of two equations, where X;:nXk; is of rank %
and normality is assumed for error terms &'s. Then as has been
shown in Chapter 1, the model is put in a form of multivariate

regression;
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4.2) Y=XB+E E ~ NJI®RI
where n=k,+k,
Y=[y,y:]:2x2 X=[X,X]:nxk+k)
mHH _mwu
(4.3) B =
pal .mu.w

E=[&,8]:nx2 ZI=(oy 12x2

H AWHlT.WuVXN with Ew»“@ and mwu.ﬂo

It is noted that the rank of X is not necessarily of full rank, The
prior information B1;=0 and B;=0 on the coefficient matrix B is

expressed as

4.4 X,BX, =0 and X;BX;=0

where
(4.5) Xo= 15, 00 s Byl +ks), Xi=1(0, 1) :2x1
4.6 X =[0,1.] : by tkhy), K= (L,0):2x1

Hence the model (4.2) with (4.4) is an extended GMANOVA
model and under this model, we consider the problem of testing

the hypothesis
(4. 7) H: =0 versus K :Bu,%0

where By, I1s the X1 vector of the first I coefficients of 8u: or Bu
=[8"111, B8], The hypothesis H in {4.7) is clearly expressed as

(4.8 H: X;BX;=0 where
X=[1,0,0] : Ix (k;+k;) and X;=(1,0)" : 2x 1.

In particular, I=1 corresponds to the hypothesis that 2 coefficient
in the first equation is zero. Of course, this problem is ar extended
GMANOVA problem described in Chapter L

For the problem of testing (4.7) or (4.8), we obtain the F—test
(or t-test when [=1) based on the first equation iz (4.1) alone,
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where the information on the nonzero correlation with the second
equation js ignored. As is well known, if the correlated second
equation does not exist, the F-test is a UMPI (uniformly mest
powerful invariant) test. However, an optimality of the F-test
should be evaluated in the present model (4. 2). The existence of
the correlated second equation implies that a GLSE (generalized
least square estimator) of B;; based on the combined model (4.2)
1s more efficient than the OLSE (ordinary LSE) based on the first
equation zlome, when o;%0 (see Chapter 1). In this section, it is
questioned whether an LBI test exists and under what a condition

the F test (or t—test when /=1) has an optimality.

4.2. Canonical form and invariance. To make the structure of
the problem clear, we shall obtain 2 canonical form of the problem
(not via the procedure in Section 2). Let
N; =1, — D(XX)7 X} (7=1,2)
4.9) Ne=T-X(X' X)X’
R; = X(X'X)* X’ — X X[ X)X (7=1,2)
r; = rank(X) — k; (7=1,2)

where (X'X)* denotes the Penrose generalized inverse. Further let

Ly be an nXg, matrix satisfying

Za”ho __".: .ﬁmhonh.no
(4. 10)
qo == 1 — rank{X}

and let H; be an nXr; matrix such that
4. 11 HH;=R, HH=I, (j=12).

In zddition, let

(4.12) Li=[L,H]:nxq, q=n—k (j=12)
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and observing LiX; =0, we set

(4.13) P =[X(XX) Ll nxn
A\.N.H;MUL)WEN F: F.

(4.14) Yy, = Y = i0; (o
Y5 uilr;

where j=1,2, Then a canonjcal form of the model (2.1) is

W=(wy, wq) : gex2 ~ N{0, IRZ)

by Bn
b B hu: buu
(4.15) e=|"2|  ythtr+r)xl ~ N(|P= , )
u; 0 S 2.,
H 0
W and ¢ are independent
where
o (XX o X)X X (X
£, = . I o o :
AR5 A0 S e & anliWE > as
(b ko) X (By -+ ),
0 QH»A‘,M‘H..NVL.MQ 2
£ = o Dkt E) X {rybrg),
Tz1 HNW..N.»V IHNJ‘EH 0
Q.EHJ qunm‘u‘ 2
R = b X g,

7
q&umu 1 Q»MH_.N

and 2, =90 Here letting the translation group RYIxXRE: act on
{b1izy b2a) where bi=(bfu, bl)’, the model (4.15) is reduced by

invariance to

W ~ N@©,I,®2)

by B o12lryy 0 71287,
4. 16) d=|u ~ 419 | 0 ond oL HIH,)
u; 0 caln enHIH, oull -
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where V and d are independent

o G G\l
4.17) (Frgy = "
Quu Auuu F.lm

M.u“m. = F, = AQE Q:VM‘M 2 = AQ“:. Q»L;M.u‘.m.nmmmn
= ﬁﬁuﬁ m..auu ﬁwufwmﬁawgvrp.%.mg
HH, = HH HH,H.H,
= H{X(X' X)X - X (XX) " X - X X %) %)
+ XXX R X XK XA,
In this model, the problem of testing By, =0 is left invariant under
group ¥={Ry)*x U{g,) acting on (5186} by
4.18) bu—aby, Ui—amy, wi—aPw; (i=1,2)
where (ay, a5, P)E€ and Ry={zER|z+0}, Arguing as in Section

5 of Chapter 3 and deriving the distribution of a maximal invariant
under this group through Wijsman’s (1967) theorem, we obtain

Theorem 4.1. No LBI test under 5 exists.

The proof is omitted. But a remark to be made is related to the

following relation

Rﬁﬁuﬂ{u — &HUWE..B nm.wwm..a
dPf g dPh,, dPho

(4.19)

where P&, is the distribution of a maximal invariant T=
T(buas, yy Uy, 105, w,) under (B, p) and p=cy,/(ouo)*: Note that
under the transformation (4, 18}, the distribution depeads on (Br11, &)
only through (8,,,, p). Now (4.19) denotes the density of T under
(B, p) with respect to Phe which is obtained by the ratio of the
integrals over ¥ as has been seen in the case of the GMANOVA
problem in Chapter 3, Under the null hypothesis 8,,,=0, the
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